Compact rings having a finite simple group of units

Jo-Ann Cohen *, Kwangil Koh
Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA
Communicated by J.D. Stasheff; received 14 November 1991; revised 28 September 1993

Abstract

For a compact Hausdorff ring, one observes that the group of units is a totally disconnected compact topological group and is a finite simple group if and only if it possesses no nontrivial closed normal subgroups. Three classification theorems for compact rings are now given. First, those compact rings with identity having a finite simple group of units are identified. Second, a classification of all compact rings A with identity for which 2 is a unit in A, G modulo the center of G is a finite simple group and the length of W is less than or equal to 4 (or equivalently, W is a torsion group) is given where G is the group of units in A and W is the subgroup of G generated by $\left\{g \in G: g^{2}=1\right\}$. Finally, those compact rings with identity having 2 as a unit and for which W is a nilpotent group are identified. (C) 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: Primary 16A80, 13J99; Secondary 16A48, 16A25

1. Introduction

If A is a compact Hausdorff topological ring with identity and if G is the group of units in A, then G is a compact topological group by [1, Exercise 12h, p. 119; 7, Theorem]. Since A is a totally disconnected space, G is 0 -dimensional [15, Theorem 8; 10, Theorem 3.5, p. 12]. Consequently, if π is an irreducible representation of G in a Hilbert space, then $\pi(G)$ is a finite group [11, Corollary 28.19, p. 69]. In particular, G contains no nontrivial closed normal subgroups if and only if G is a finite simple group.

In Section 2, we show that G is a finite simple group if and only if A is isomorphic and homeomorphic to the ring $\prod_{x \in A} \mathbb{Z} /(2)$, endowed with the product topology, where Λ is a nonempty set and $\mathbb{Z} /(2)$ is the ring of integers modulo 2 or A is isomorphic and homeomorphic to $\left(\prod_{x \in \Lambda} \mathbb{Z} /(2)\right) \times A_{0}$, endowed with the product topology, where Λ is an arbitrary set and A_{0} is one of the following rings:

[^0](1) a finite field of cardinality 3 or cardinality 2^{n} where n is a positive integer such that $2^{n}-1$ is prime,
(2) the set of $n \times n$ matrices over $\mathbb{Z} /(2)$ for some $n \geq 3$,
(3) $\mathbb{Z} /(4)$, the ring of integers modulo 4 ,
(4) $\mathbb{Z} /(2)[x] /\left(x^{2}\right)$ where $\mathbb{Z} /(2)[x]$ is the ring of polynomials in x with coefficients in $\mathbb{Z} /(2)$ and $\left(x^{2}\right)$ is the ideal of $\mathbb{Z} /(2)[x]$ generated by x^{2}, or
(5) the set of all 2×2 upper triangular matrices over $\mathbb{Z} /(2)$.

If G is a group, let $Z(G)$ denote the center of G and let W be the subgroup of G generated by the set of involutions $\Delta=\left\{g \in G: g^{2}=1\right\}$. If $g \in W$, the length $l(g)$ of g is the smallest positive integer m such that there exist $w_{1}, w_{2}, \ldots, w_{m}$ in Δ with $g=w_{1} w_{2} \cdots w_{m}$. For each subgroup H of W, define the length $l(H)$ of H by $l(H)=\sup _{g \in H} l(g)$. There are compact rings with identity for which $l(W)$ is infinite, and $l(W)$ is finite if and only if W is compact. (See [5].) In [9], Gustafson et al. proved that if G is the group of nonsingular matrices over a field, then $l(W) \leq 4$. Consequently, if A is a semisimple compact ring with identity, then $l(W) \leq 4$ as A is isomorphic to the product $\prod_{x \in A} M_{\chi}$, where each M_{χ} is a matrix ring over a finite field [15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 171]. In Section 3 we show that for a compact ring $A, G / Z(G)$ is a finite simple group if and only if it possesses no nontrivial closed normal subgroups and then give a characterization of those compact rings A with identity for which 2 is a unit in $A, G / Z(G)$ is a finite simple group and $l(W) \leq 4$. In particular, we show that A has the above properties if and only if $G / Z(G)$ is a finite simple group and W is a torsion group. Finally, in Section 4, we prove that if 2 is a unit in a compact ring A with identity, then the following are equivalent:

1. W is a nilpotent group.
2. W is abelian.
3. A is isomorphic and homeomorphic to the product $\prod_{x \in \Lambda} N_{\alpha}$, where for each α in A, N_{α} is a compact local ring with identity such that the characteristic of N_{α} / J_{α} is an odd prime p_{α} where J_{x} is the Jacobson radical of N_{α}.

As a corollary, we obtain that if A is a compact ring with identity for which 2 is a unit, then G is abelian if and only if W and G / W are abelian.

Henceforth if A is a ring with identity, G, J, Δ and W will denote the group of units in A, the Jacobson radical of A, the subset $\left\{g \in G: g^{2}=1\right\}$ of involutions of G and the subgroup of G generated by Δ, respectively. In order to avoid confusion, we will sometimes denote G, J, Λ and W by $G(A), J(A), \Lambda(A)$ and $W(A)$, respectively.

2. Compact rings having a simple group of units

Henceforth, all compact topologies are assumed to be Hausdorff.
Lemma 2.1. Let G be a totally disconnected compact group. Then G possesses no nontrivial closed normal subgroups if and only if G is a finite simple group.

Proof. Suppose that G contains no nontrivial closed normal subgroups. Since G is a compact group, G has a unitary irreducible representation in the group $\mathrm{GL}(V)$ of automorphisms of a finite dimensional complex vector space V by [16, Theorem 2, p. 27]. By hypothesis, this representation is faithful and hence G is isomorphic to a closed subgroup of $\mathrm{GL}(V)$. Therefore G is a Lie group [2, Corollary, p. 135]. Consequently, as each component of a Lie group is open [2, Proposition 1, p. 40], G is endowed with the discrete topology. Thus G is a finite group.

The converse is clear.
Theorem 2.2. Let G be the group of units of a compact ring A with identity. (1) G is a totally disconnected compact topological group. (2) G is a finite simple group if and only if G possesses no nontrivial closed normal subgroups.

Proof. By [1, Exercise 12h, p. 119; 7, Theorem], G is a compact topological group. As A is totally disconnected [15, Theorem 8], G is totally disconnected as well. (2) follows from Lemma 2.1.

Recall that an idempotent e in a ring A is primitive if e is not the sum of two nontrivial orthogonal idempotents in A.

Lemma 2.3. Let A be a compact ring with identity and suppose $e+J$ is a primitive idempotent in A / J. If f is any idempotent in A such that $f+J=e+J$, then f is primitive.

Proof. If f were not primitive, then there would exist nontrivial orthogonal idempotents f_{1} and f_{2} in A such that $f=f_{1}+f_{2}$. Consequently as $f+J$ is a primitive idempotent in A / J, either $f_{1}+J=J$ or $f_{2}+J=J$, that is, either $f_{1} \in J$ or $f_{2} \in J$. But J contains no nontrivial idempotent since $a^{n} \rightarrow 0$ for all a in J [15, Theorem 15]. Hence f is a primitive idempotent in A.

Lemma 2.4. Let A be a compact ring with identity such that $A / J=\prod_{x \in A} \mathbb{Z} /(2)$ for some nonempty set Λ. For each β in Λ, let $E_{\beta}=\left\langle x_{\alpha}\right\rangle_{\alpha \in A}$ where $x_{\beta}=\overline{1}$, the multiplicative identity of $\mathbb{Z} /(2)$ and for $\alpha \neq \beta, x_{x}=\overline{0}$, the additive identity of $\mathbb{Z} /(2)$. Then there exists a family $\left\{e_{x}: \alpha \in A\right\}$ of primitive orthogonal idempotents in A such that $e_{x}+J=E_{\alpha}$ for all α in $A, \sum_{\alpha \in A} e_{\alpha}=1$ and $e_{\alpha} A e_{\alpha} / e_{x} J e_{x} \cong \mathbb{Z} /(2)$ for all α in A.

Proof. Well-order Λ. If Λ has no largest element, let $\Lambda^{\prime}=\Lambda$. Otherwise, adjoin ∞ to A and extend the ordering from Λ to $\Lambda \cup\{\infty\}$ by declaring that ∞ is the largest element in $\Lambda \cup\{\infty\}$. In this case, let $\Lambda^{\prime}=\Lambda \cup\{\infty\}$. Let $\hat{\lambda}_{0}$ be the smallest element of A. For each $\lambda \subset A^{\prime} \backslash\left\{\lambda_{0}\right\}$, define F_{λ} by $F_{\lambda}=\sum_{\rho<\lambda} E_{\lambda}$. So $F_{\lambda}=\left\langle y_{\alpha}\right\rangle_{\alpha \in A}$ where $y_{x}=\overline{1}$ for all $\alpha<\lambda$. and $y_{x}=\overline{0}$ for all $\alpha \geq \lambda$. Clearly, if $\lambda_{1}, \hat{\lambda}_{2} \in \Lambda^{\prime} \backslash\left\{\lambda_{0}\right\}$ where $\lambda_{1} \leq \lambda_{2}$, then $F_{\lambda_{1}} F_{i_{2}}=F_{\lambda_{2}} F_{\lambda_{1}}=F_{\lambda_{1}}$. Moreover, if λ is a limit ordinal of $\Lambda^{\prime} \backslash\left\{\lambda_{0}\right\}$, then $F_{\ell}=\lim _{\rho<\lambda} F_{\rho}$. Hence by [15, Lemma 12], there exists a family $\left\{h_{\lambda}: \lambda \in \Lambda^{\prime} \backslash\left\{\lambda_{0}\right\}\right\}$
of idempotents in A such that $h_{\lambda_{1}} h_{\lambda_{2}}=h_{\lambda_{2}} h_{\lambda_{1}}=h_{\lambda_{1}}$ for all $\lambda_{0}<\lambda_{1} \leq \lambda_{2}$ and $h_{\lambda}+J=F_{\lambda_{\lambda}}$ for all $\lambda \in \Lambda^{\prime} \backslash\left\{\lambda_{0}\right\}$. Let $h_{\lambda_{0}}$ be the additive identity of A. For each $\lambda \in A$, let $\gamma(\lambda)$ denote the smallest element of $\left\{\rho \in \Lambda^{\prime}: \lambda<\rho\right\}$ and let $e_{\lambda}=h_{\gamma(\lambda)}-h_{\lambda}$. Then $\left\{e_{\lambda}: \lambda \in \Lambda\right\}$ is a family of orthogonal idempotents in A such that for each α in Λ, $e_{\alpha}+J=E_{\alpha}$ and $e_{\alpha} A e_{\alpha} / e_{\alpha} J e_{\alpha} \cong \mathbb{Z} /(2)$. As each E_{α} is a primitive idempotent in A / J, Lemma 2.3 yields that each e_{α} is a primitive idempotent in A. So it suffices to prove that $\sum_{x \in \Lambda} e_{x}=1$.

First notice that $\sum_{x \in A} e_{x}$ exists. Indeed, as A is compact, there exists a fundamental system of ideal neighborhoods of zero in A [10, Theorem 3.5, p. 12, Theorem 7.7, p. 62; 15, Theorem 8 and Lemma 9]. Since A is complete, it suffices to show that if U is an open ideal of A and if $M=\left\{\alpha \in A: e_{\alpha} \notin U\right\}$, then M is finite. Let U be an open ideal of A. Then A / U is a compact discrete ring and hence a finite ring. In particular, A / U has finitely many idempotents. Moreover, if α and β are distinct elements of M, then $e_{\alpha}+U \neq e_{\beta}+U$. Indeed, if $e_{\alpha}+U=e_{\beta}+U$, then $e_{\alpha}+U=e_{\alpha}^{2}+U=e_{\chi} e_{\beta}+U=0+U=U$, a contradiction. Hence M is finite and so $\sum_{x \in A} e_{\alpha}$ exists. (The above proof is an adaptation of one given by Scth Warner in an unpublished manuscript.) Since $\left\{e_{\alpha}: \alpha \in \Lambda\right\}$ is a family of orthogonal idempotents in $A, \sum_{\alpha \in A} e_{x}$ is an idempotent as well. Thus $1-\sum_{x \in A} e_{\alpha}$ is an idempotent in A. By construction, $1-\sum_{x \in A} e_{x} \in J$ and therefore, as in the proof of Lemma 2.3, $1-\sum_{\alpha \in \Lambda} e_{\alpha}=0$.

Lemma 2.5. Let A be a ring with identity and let Γ denote a nonempty set of idempotents in A such that for all f in $\Gamma, f+J$ is a central idempotent in A / J. If Γ is contained in the centralizer of J in A, then Γ is contained in the center of A.

Proof. Let $e \in \Gamma$ and let $x \in A$. Since $(e+J)(x+J)=(x+J)(e+J)$, $e x-x e \in J$. Denote $e x-x e$ by a. Then $a e=e a$ and so $e a=e^{2} a=e(e a)=e(a e)=e(e x-x e) e=0$. Thus $0=e a=e(e x-x e)=e x$-exe and hence $e x=e x e$. Since $a e=e a=0,0=$ $a e=(e x-x e) e$ and consequently, exe $=x e$ as well. Therefore e is in the center of A.

Lemma 2.6. Let A be a nonempty set and for each $\alpha \in \Lambda$, let F_{x} be a finite field endowed with the discrete topology. Let $A=\prod_{x \in A} F_{\alpha}$, endowed with the product topology. If I is a nonzero closed left (right) ideal of $\prod_{\alpha \in A} F_{x}$, then there exists a nonempty subset Λ_{1} of Λ such that $I=\prod_{x \in A} B_{\alpha}$ where $B_{\alpha}=F_{\alpha}$ for all α in Λ_{1} and $B_{\alpha}=\left\{0_{\alpha}\right\}$ for all $\alpha \in \Lambda \backslash \Lambda_{1}$ (where 0_{x} is the additive identity of F_{x}).

Proof. For each α in Λ, let 1_{α} denote the multiplicative identity of F_{α}. Define Λ_{1} by, $\Lambda_{1}=\left\{\alpha \in A\right.$: there exists $\left\langle x_{\beta}\right\rangle_{\beta \in A}$ in I with $\left.x_{\alpha} \neq 0_{\alpha}\right\}$. For each α in Λ_{1}, let $B_{\alpha}=F_{\alpha}$ and for each α in $\Lambda \backslash \Lambda_{1}$, let $B_{\alpha}=\left\{0_{\alpha}\right\}$. Clearly $I \subseteq \prod_{\alpha \in A} B_{\alpha}$.

We first prove that given any α in Λ_{1}, the element s_{α} of A defined by, $s_{\alpha}=\left\langle v_{\beta}\right\rangle_{\beta \in A}$ where $v_{x}=1_{\alpha}$ and $v_{\beta}=0_{\beta}$ for $\beta \neq \alpha$, is an element of I. Indeed, let $\left\langle x_{\beta}\right\rangle_{\beta \in A} \in I$ be such that $x_{x} \neq 0_{\alpha}$ and let $y_{\alpha} \in F_{\alpha}$ be such that $x_{\alpha} y_{\alpha}=y_{x} x_{\alpha}=1_{\alpha}$. Define $\left\langle z_{\beta}\right\rangle_{\beta \in A} \in A$ by, $z_{\alpha}=y_{\alpha}$ and $z_{\beta}=0_{\beta}$ for $\beta \neq \alpha$. Then $s_{\alpha}=\left\langle z_{\beta}\right\rangle_{\beta \in \Lambda}\left\langle x_{\beta}\right\rangle_{\beta \in \Lambda} \in I$.

Now let $\left\langle d_{x}\right\rangle_{x \in A} \in \prod_{x \in A} B_{x}$. As I is closed, it suffices to prove that $\left\langle d_{x}\right\rangle_{x \in A} \in \bar{I}$. So let U be a neighborhood of $\left\langle d_{\alpha}\right\rangle_{x \in A}$ in A. Without loss of generality, we may assume that there exists a finite subset Λ_{2} of Λ such that $U=\prod_{x \in A} U_{x}$ where $U_{x}=\left\{d_{x}\right\}$ for all α in Λ_{2} and $U_{2}=F_{\alpha}$ for all $\alpha \in \Lambda \backslash \Lambda_{2}$. Let $\Lambda_{2}^{\prime} \subseteq \Lambda_{2}$ be such that for all α in $\Lambda_{2}^{\prime}, d_{\alpha} \neq 0_{\alpha}$ and for all α in $\Lambda_{2} \backslash \Lambda_{2}^{\prime}, d_{\alpha}=0_{\alpha}$. For each α in Λ_{2}^{\prime}, let $t_{\alpha}=\left\langle c_{\beta}\right\rangle_{\beta \in A}$ where $c_{\alpha}=d_{\alpha}$ and $c_{\beta}=0_{\beta}$ for all $\beta \neq \alpha$. Recall that for each α in $\Lambda_{2}^{\prime}, s_{\chi} \in I$. Thus $\sum_{x \in A_{2}^{\prime}} t_{\chi} s_{x} \in I \cap U$ and so $\left\langle d_{\alpha}\right\rangle_{x \in A} \in \bar{I}$.

Recall that a ring A with identity is called a local ring if the set of nonunits in A is an ideal of A.

Lemma 2.7. Let A be a compact ring with identity having characteristic two such that $J=\{0, a\}$ for some nonzero a in A and $A / J \cong \prod_{x \in A} \mathbb{Z} /(2)$ for some nonempty set Λ. Then for some indexing set Γ, A is isomorphic and homeomorphic to $\left(\prod_{\beta \in \Gamma} \mathbb{Z} /(2)\right) \times$ A_{0} where A_{0} is one of the following rings:
(1) $\mathbb{Z} /(2)[x] /\left(x^{2}\right)$ where $\mathbb{Z} /(2)[x]$ is the ring of polynomials in x with coefficients in $\mathbb{Z} /(2)$ and $\left(x^{2}\right)$ is the ideal of $\mathbb{Z} /(2)[x]$ generated by x^{2}; or
(2) the set of all 2×2 upper triangular matrices over $\mathbb{Z} /(2)$.

Proof. First notice that as g is a unit in A if and only if $g+J$ is a unit in $A / J, G=$ $1+J$. By Lemma 2.4, there exists a primitive idempotent e in A such that $e a \neq 0$ and $e A e / e J e \cong \mathbb{Z} /(2)$. In particular, as $e a \in J, e a=a$. Recall that the Pierce decomposition of A relative to e yields that $A=e A e \oplus(1-e) A(1-e) \oplus e A(1-e) \oplus(1-e) A e$. (See for example [14, p. 48].)
Suppose that $e a e=0$. We first show that $A=e A e \oplus(1-e) A(1-e) \oplus e A(1-e)$ where $J=e A(1-e)$. Indeed, as $e a e=0, a e=0$ and thus $(1-e) a(1-e)=(1-e) a=0$. So $a=e a e+(1-e) a(1-e)+e a(1-e)+(1-e) a e=e a(1-e)$ and consequently $J \subseteq e A(1-e)$. Notice that if $x \in e A(1-e)$, then $x^{2}=0$ and hence $(1+x)(1-x)=(1-x)(1+x)=1$. Thus if $x \in e A(1-e)$, then $\mathrm{i}+x \in G=1+J$. Therefore, $e A(1-e) \subseteq J$. Similarly as $((1-e) A e)^{2}=\{0\},(1-e) A e \subseteq J=e A(1-e)$ and hence $(1-e) A e=\{0\}$. So $A=e A e \in(1-e) A(1-e) \oplus e A(1-e)$ where $e A(1-e)=J$.

Observe next that as eae $=0, e J e=\{0\}$ and hence $e A e$ is a finite field having two elements. Moreover as $(1-e) a(1-e)=0$ and as $(1-e) J(1-e)$ is the Jacobson radical of $(1-e) A(1-e)[14$, Proposition 1, p. 48], $(1-e) A(1-e)$ is a compact semisimple ring with identity $1-e \neq 0$. Furthermore, $1-e$ is the only unit in $(1-e) A(1-e)$. Indeed, if x and y are elements in $(1-e) A(1-e)$ such that $x \neq 1-e$ but $x y=y x=(1-e)$, then as $x e=e x=y e=e y=0,(x+e)(y+e)=(y+e)(x+e)=1$. Therefore $x+e \in G=1+J=\{1,1+a\}$. Since $x \neq 1-e, x+e=1+a$. Consequently, $e x+e^{2}=e+e a=e+a$ and so $0=e x=a$, a contradiction. Thus $(1-e) A(1-e)$ is isomorphic and homeomorphic to $\prod_{x \in \Gamma_{1}} \mathbb{Z} /(2)$ for some nonempty set Γ_{1} by [15, Theorem 16]. For simplicity of notation, assume that $(1-e) A(1-e)=$ $\prod_{x \in \Gamma_{1}} \mathbb{Z} /(2)$.

Let a^{r} denote the right annihilator of a in A and let $g:(1-e) A(1-e) \rightarrow J$ be given by $g(x)=a x$ for all x in $(1-e) A(1-e)$. Observe that g is a surjective additive group homomorphism with kernel $a^{r} \cap(1-e) A(1-e)$. So $a^{r} \cap(1-e) A(1-e)$ is a closed subset of $(1-e) A(1-e)$ and hence by Lemma 2.6 , there exists a subset Γ_{2} of Γ_{1} such that $a^{r} \cap(1-e) A(1-e)=\prod_{x \in \Gamma_{1}} B_{z}$ where $B_{\alpha}=\mathbb{Z} /(2)$ for all α in Γ_{2} and $B_{\alpha}=\{\overline{0}\}$ otherwise (where $\overline{0}$ is the additive identity of $\mathbb{Z} /(2)$). In particular, $a^{r} \cap(1-e) A(1-e)$ is a two-sided ideal of $(1-e) A(1-e)$. Moreover, as $(1-e) A(1-e) / a^{r} \cap(1-e) A(1-e) \cong$ J, the cardinality, $\left|\Gamma_{1} \backslash \Gamma_{2}\right|$, of $\Gamma_{1} \backslash \Gamma_{2}$ is 1 . Let $\alpha_{0} \in \Gamma_{1} \backslash \Gamma_{2}$ and let $I=\prod_{x \in \Gamma_{1}} C_{x}$ where $C_{x_{0}}=\mathbb{Z} /(2)$ and for all $x \in \Gamma_{1} \backslash\left\{x_{0}\right\}, C_{x}=\{\overline{0}\}$. Then $(1-e) A(1-e)=$ $I \oplus a^{r} \cap(1-e) A(1-e)$ and so $A=e A e \oplus\left[I \ominus a^{r} \cap(1-e) A(1-e)\right] \oplus e A(1-e)$. A routine proof shows that $e A e \oplus I \notin A(1-e)$ and $a^{r} \cap(1-e) A(1-e)$ are ideals of A, the first of which has 8 elements and the second of which is isomorphic and homeomorphic to $\prod_{x \in \Gamma_{2}} \mathbb{Z} /(2)$ or to $\{\overline{0}\}$ if $\Gamma_{2}=0$.

By construction, $I \cong \mathbb{Z} /(2)$. So if i is the multiplicative identity of I, then $e+i$ is the multiplicative identity of the ring $e A e \oplus I \ominus e A(1-e)$. Notice that $e A e \oplus I \oplus e A(1-e)$ is noncommutative as $e a \neq a e$. Thus $e A e \oplus I \oplus e A(1-e)$ is isomorphic to the ring of 2×2 upper triangular matrices over $\mathbb{Z} /(2)$ by [17, Theorem 14]. Consequently, if $e a e=0$, then A is isomorphic and homeomorphic to A_{0} or to $\left(\prod_{x \in \Gamma_{2}} \mathbb{Z} /(2)\right) \times A_{0}$ where A_{0} is the ring of 2×2 upper triangular matrices over $\mathbb{Z} /(2)$.

Finally, suppose that $e a e \neq 0$, that is, suppose that $e a e=a$. We first show that e is in the center of A. Indeed, let $x \in A$. As A / J is commutative, $e x-x e \in J$. Therefore $e x-x e=0$ or $e x-x e=a$. If $e x-x e=a$, then $e^{2} x-e x e=e a=a=e x-x e$ and hence $e x e=x e$. Similarly, exe $=e x$ and so in either case $e x=x e$. Thus e is in the center of A. In particular, $e A(1-e)=(1-e) A e=\{0\}$ and so $A=e A e \oplus(1-e) A(1-e)$.

Recall that $e A e / e J e \cong \mathbb{Z} /(2)$, a finite field having two elements. So $e A e$ is a local ring with identity having four elements and having characteristic 2 . Consequently, by [3, Theorem 2.5], eAe $\cong \mathbb{Z} /(2)[x] /\left(x^{2}\right)$.

Since $e a=a,(1-e) a(1-e)=0$. Therefore, as before, if $1-e \neq 0$, then $(1-c) A(1-c)$ is isomorphic and homeomorphic to $\prod_{x \in \Gamma} \mathbb{Z} /(2)$ for some nonempty set Γ. Otherwise, $(1-e) A(1-e)=\{0\}$. Thus A is isomorphic and homeomorphic to $\left(\prod_{x \in \Gamma} \mathbb{Z} /(2)\right) \times \mathbb{Z} /(2)[x] /\left(x^{2}\right)$ or to $\mathbb{Z} /(2)[x] /\left(x^{2}\right)$.

Theorem 2.8. Let A be a compact ring with identity and let G be the group of units in A. G is simple if and only if A is isomorphic and homeomorphic to $\prod_{\alpha \in A} \mathbb{Z} /(2)$ for some nonempty set Λ or A is isomorphic and homeomorphic to $\left(\prod_{x \in \Lambda} \mathbb{Z} /(2)\right) \times A_{0}$ where A is an arbitrary set and A_{0} is one of the following rings:
(1) a finite field of cardinality 3 or 2^{n} for some positive integer n such that $2^{n}-1$ is a prime,
(2) the set of $n \times n$ matrices over $\mathbb{Z} /(2)$ where n is a positive integer greater than or equal to 3 ,
(3) $\mathbb{Z} /(4)$,
(4) $\mathbb{Z} /(2)[x] /\left(x^{2}\right)$, or
(5) the ring of 2×2 upper triangular matrices over $\mathbb{Z} /(2)$.

Proof. As $\operatorname{GL}(n, \mathbb{Z} /(2))$ is simple for all $n \geq 3[19$, Theorem 9.9, p. 78], if A is one of the rings described above, then G is a finite simple group. Conversely, assume that G is a simple group. By Theorem 2.2, G is finite.

First assume that A is semisimple. By [15, Theorem 16], A is isomorphic and homeomorphic to $\prod_{x \in A} M_{x}$ where each M_{x} is the set of $n_{x} \times n_{x}$ matrices over a finite field F_{χ}. For each α in Λ, let G_{χ} denote the group of units in M_{χ}. As G is a simple group, the set Λ_{1} defined by $\Lambda_{1}=\left\{\alpha \in A:\left|G_{x}\right|>1\right\}$ has at most one element. Moreover, if $\alpha \in \Lambda_{1}$, then G_{χ} is a finite simple group. Thus for all β in $\Lambda \backslash \Lambda_{1}, M_{\beta} \cong \mathbb{Z} /(2)$ and if $\Lambda_{l}=\{x\} \neq \emptyset$, then M_{x} is a finite field such that the cardinality of G_{α} is a prime or M_{x} is isomorphic to the ring of $n \times n$ matrices over $\mathbb{Z} /(3)$ for some $n \geq 3$ [19, Theorem 9.9, p. 78].

Suppose then that $J \neq\{0\}$. Since $1+J$ is a closed normal subgroup of $G, G=1+J$. Consequently, A / J is isomorphic and homeomorphic to $\prod_{\alpha \in A} \mathbb{Z} /(2)$ for some nonempty sel A by [15, Theoreni 16; 12, Theorem, p. 431; 13, Theorem, p. 171].

Since J is finite, $J^{2} \neq J$ by Nakayama's Lemma [13, Theorem, p. 412]. Thus as $1+J^{2}$ is a closed normal subgroup of $1+J, J^{2}=(0)$. In particular, as $G=1+J$, G is abelian and so the cardinality of G is a prime p. Note that $2 \in J$ since $A / J \cong$ $\prod_{x \in A} \mathbb{Z} /(2)$. Therefore as $J^{2}=(0)$, the characteristic of A is either 2 or 4 . Let $a \in$ $J \backslash\{0\}$. If the characteristic of A is 2 , then $(1+a)^{2}=1$ and hence the order of $1+a$ is 2 . Thus $p=2$. On the other hand, if the characteristic of A is 4 , then $2 \in J \backslash\{0\}$ and $(1+2)^{2}=1$. Therefore in either case, $p=2$, that is $1+J=G=\{1,1+a\}$ for some nonzero a in J. By Lemma 2.7, it suffices to show that if A has characteristic 4 , then A is isomorphic and homeomorphic to $\left(\prod_{\beta \in \Gamma} \mathbb{Z} /(2)\right) \times \mathbb{Z} /(4)$ for some indexing set Γ.

Assume then that the characteristic of A is 4 . We first prove that A is a commutative ring. As $2 \in J \backslash\{0\}, J=\{0,2\}$ and hence by Lemma 2.5 , if e is any idempotent in A, then e is contained in the center of A. Consequently, A is commutative. Indeed, let $x \in A$. Then $x+J$ is an idempotent in A / J and hence there exists an idempotent e in A such that $x+J=e+J[15$, Lemma 12]. Thus $x \in\{e, e+2\}$ and so x is in the center of A. Therefore by [15, Theorem 17], A is isomorphic and homeomorphic to $\prod_{x \in A_{1}} N_{\chi}$ where for each α in A_{1}, N_{α} is a commutative, local, compact ring with identity. For each α in Λ_{1}, let G_{x} denote the group of units in N_{x} and let J_{z} denote the Jacobson radical of N_{α}. As $A / J \cong \prod_{x \in A} \mathbb{Z} /(2)$, for each x in $\Lambda_{1}, N_{\alpha} / J_{\alpha} \cong \mathbb{Z} /(2)$. Let Λ_{2} be the subset of Λ_{1} defined by, $\Lambda_{2}=\left\{\alpha \in \Lambda_{1}:\left|G_{\alpha}\right|>1\right\}$. Then for all $\alpha \in \Lambda_{1} \backslash \Lambda_{2},\left|G_{\alpha}\right|=1$ and hence $N_{\chi} \cong \mathbb{Z} /(2)$. As before, since G is simple, A_{2} has at most one element. But as A has characteristic $4, \Lambda_{2} \neq \emptyset$. Let $\Lambda_{2}=\left\{x_{0}\right\}$. Then A is isomorphic and homeomorphic to $\left(\prod_{x \in A_{1} \backslash A_{2}} \mathbb{Z} /(2)\right) \times N_{x_{0}}$. It suffices to show that $N_{x_{0}} \cong \mathbb{Z} /(4)$.

Observe that $N_{x_{0}}$ has characteristic 4 as A has characteristic 4. Moreover, as $|G|=2$, $\left|G_{x_{0}}\right|=2$ as well. Therefore $\left|N_{x_{0}}\right|=4$ since $N_{x_{0}} / J_{x_{0}} \cong \mathbb{Z} /(2)$. So $N_{x_{0}}$ is a 4-element ring with identity having characteristic 4 , that is, $N_{\alpha_{0}} \cong \mathbb{Z} /(4)$.

Corollary 2.9. Let A be a compact ring with identity and let G be the group of units in A. The following statements are equivalent:
(a) G possesses no nontrivial closed normal subgroups.
(b) G is a finite simple group.
(c) G is isomorphic to one of the following finite simple groups:
(1) the trivial group,
(2) $\mathbb{Z} /(2)$,
(3) $\mathbb{Z} /\left(2^{n}-1\right)$ where $2^{n}-1$ is a prime or
(4) $G L(n, \mathbb{Z} /(2))$ where $n \geq 3$.

Proof. The corollary follows from Theorems 2.2 and 2.8.

3. Simplicity of $G / Z(G)$

Throughout this section, unless otherwise stated, A is a compact ring with identity. For each subgroup U of G, we will denote the center of U by $Z(U)$.

Lemma 3.1. $Z(G)$ is a closed normal subgroup of G and $G / Z(G)$ is a compact totally disconnected group.

Proof. The fact that $Z(G)$ is a closed subset of G follows from the continuity of the map $(x, y) \rightarrow x y x^{-1} y^{-1}$. Since G is totally disconnected by Theorem $2.2, G / Z(G)$ is also totally disconnected [10, Theorem 7.11, p. 63].

Lemma 3.2. $G / Z(G)$ is a finite simple group if and only if $G / Z(G)$ has no nontrivial closed normal subgroups.

Proof. The result follows from Lemmas 2.1 and 3.1.
Lemma 3.3. If $G / Z(G)$ is a finite simple group, then either $W=Z(W)$ or $W / Z(W) \cong$ $G / Z(G)$.

Proof. Assume that $W \neq Z(W)$. Since $W Z(G)$ is a normal subgroup of G containing $Z(G), W Z(G)=Z(G)$ or $W Z(G)=G$. If $W Z(G)=Z(G)$, then $W \subseteq Z(G)$ and hence $W=Z(W)$, a contradiction. So $W Z(G)=G$. Therefore $G / Z(G)=W Z(G) / Z(G) \cong$ $W / W \cap Z(G)$. In particular, $W / W \cap Z(G)$ is a simple group. Clearly, $W \cap Z(G) \subseteq Z(W)$. Therefore since $W / W \cap Z(G)$ is simple and since $W \neq Z(W)$ by assumption, $Z(W)=$ $W \cap Z(G)$. So $G / Z(G) \cong W / Z(W)$.

As in Section 1, for each $w \in W$, define the length $l(w)$ of w to be the smallest positive integer m such that there exist $w_{1}, w_{2}, \ldots, w_{m}$ in Λ with $w=w_{1} w_{2} \cdots w_{m}$. For each subset S of W, let $l(S)=\sup \{l(s): s \in S\}$.

Lemma 3.4. Let $w \in W$ be such that $l(w) \leq 2$. Then for each positive integer n, $l\left(w^{n}\right) \leq 2$.

Proof. The result clearly holds if $l(w)=1$, that is, if $w^{2}=1$. So assume that $l(w)=2$. Let $d_{1}, d_{2} \in A$ be such that $w=d_{1} d_{2}$ and let n be a positive integer. If $n=2 k+1$ for some positive integer k, then $w^{n}=\left[\left(d_{1} d_{2}\right)^{k} d_{1}\right]\left[d_{2}\left(d_{1} d_{2}\right)^{k}\right]$ where $\left[\left(d_{1} d_{2}\right)^{k} d_{1}\right]^{2}=\left[d_{2}\left(d_{1} d_{2}\right)^{k}\right]^{2}=1$ and so $l\left(w^{n}\right) \leq 2$. If n is an even integer, then $w^{n}=\left[\left(d_{1} d_{2}\right)^{n-2} d_{1}\right]\left[d_{2} d_{1} d_{2}\right]$ where $\left[\left(d_{1} d_{2}\right)^{n-2} d_{1}\right]^{2}=\left(d_{2} d_{1} d_{2}\right)^{2}=1$ and so once again, $l\left(w^{n}\right) \leq 2$.

The following was proved in [6].
Lemma 3.5. Suppose that 2 is a unit in A. The following are equivalent:
(1) $\{g \in(1+J) \cap W: l(g) \leq 2\}=\{1\}$.
(2) $(1+J) \cap W=\{1\}$.
(3) A is isomorphic and homeomorphic to $\prod_{x \in A} N_{\chi}$ where for each α in A, N_{x} is a matrix ring over a finite field of odd characteristic or N_{x} is a compact local ring with identity such that the characteristic of N_{α} / J_{α} is an odd prime where J_{α} is the Jacohson radical of N_{α}.

Proof. See [6, Theorem 2.6].
Lemma 3.6. Let F be a finite field having odd characteristic, let n be a positive integer and let $A=M(n, F)$, the ring of $n \times n$ matrices over F.
(1) $W=\{x \in A: \operatorname{det} x= \pm 1\}$ and $l(W) \leq 4$.
(2) $Z(W)=Z(G) \cap W$.
(3) $W / Z(W)$ is simple if and only if there is a k in F with $k^{n}=-1$.

Proof. (1) holds by [9]. Clearly (2) and (3) hold when $n=1$. So assume that $n \geq 2$. Notice that since F has odd characteristic, if $w \in G$, then $w \operatorname{diag}(1,1, \ldots, 1,-1)=$ diag $(1,1, \ldots, 1,-1) w$ if and only if

$$
w=\left(\begin{array}{ccc}
& & 0 \\
& B & \\
& & \\
0 \\
0 & \ldots & 0 \\
a_{n n}
\end{array}\right)
$$

for some nonsingular matrix B in $M(n-1, F)$ and for some $a_{n n}$ in $F \backslash\{0\}$. In particular, if $w \in Z(W)$, then w has the above form. So for all w in $Z(W)$ and for all k in $F \backslash\{0\}, w \operatorname{diag}(1,1, \ldots, 1, k)=\operatorname{diag}(1,1, \ldots, 1, k) w$. As $G=W\{\operatorname{diag}(1,1, \ldots, 1, k)$: $k \in F \backslash\{0\}\}$ [18, Lemma 8.13, p. 163], $Z(W) \subseteq Z(G)$ and hence (2) holds.

Denote $\{x \in A: \operatorname{det} x=1\}$ by $\operatorname{SL}(n, F)$. By (1) and (2), $Z(W)=\left\{\alpha I: \alpha^{n}= \pm 1\right\}$ where I is the $n \times n$ identity matrix in A. Hence as $Z(\operatorname{SL}(n, F))=\left\{\alpha I: \alpha^{n}=1\right\}[18$, Theorem 8.15, p. 164], $Z(\operatorname{SL}(n, F))=\mathrm{SL}(n, F) \cap Z(W)$.

Suppose there is a k in F with $k^{n}=-1$. Since $k I \in Z(W)$ and $\operatorname{det}(k I)=$ $-1, \mathrm{SL}(n, F) Z(W)=W$. Therefore, $W / Z(W)=\operatorname{SL}(n, F) Z(W) / Z(W) \cong \operatorname{SL}(n, F) /$ $(\mathrm{SL}(n, F) \cap Z(W))=\mathrm{SL}(n, F) / Z(\mathrm{SL}(n, F))=\operatorname{PSL}(n, F)$, the projective unimodular group. Therefore if $n \geq 3$, then $W / Z(W)$ is simple by the Jordan-Dickson Theorem [18, Theorem 8.27, p. 174]. Since there exists a k in F with $k^{n}=-1$, if $n=2$, then the cardinality of F must be greater than 3 . Consequently, $W / Z(W)$ is simple by the Jordan-Moore Theorem [18, Theorem 8.19, p. 167].

Conversely, assume that $W / Z(W)$ is simple. If for all k in $F, k^{n} \neq-1$, then $Z(W)=$ $\left\{\alpha I: \alpha^{n}=1\right\}$ and hence $\operatorname{SL}(n, F) / Z(W)$ is a proper normal subgroup of $W / Z(W)$, a contradiction. Therefore (3) holds.

Lemma 3.7. Suppose that 2 is a unit in A and that $G / Z(G)$ is a finite simple group. If $l(Z(W)) \leq 4$ or if $Z(W)$ is a torsion group, then $(1+J) \cap W \subseteq Z(G)$.

Proof. Assume that $l(Z(W)) \leq 4$. By Lemma 3.2, since $G / Z(G)$ is a simple group, $G / Z(G)$ is finite. Therefore by the Feit-Thompson Theorem [8, Theorem, p. 775], the order, $|G / Z(G)|$, of $G / Z(G)$ is 1 , a prime p or $2^{n} q$ where n is a positive integer and q is an odd integer. The result clearly holds if $|G / Z(G)|=1$ and so we may assume that $|G / Z(G)|$ is a prime p or $|G / Z(G)|$ is even.

Suppose first that $|G / Z(G)|=2$. We will prove that $(1+J) \cap W=\{1\}$. By Lemma 3.5 it suffices to show that if $w \in(1+J) \cap W$ and $l(w) \leq 2$, then $w=1$. Let $d_{1}, d_{2} \in \Delta$ where $d_{1} d_{2} \in 1+J$. If $d_{1} d_{2} \neq 1$, let $a \in J \backslash\{0\}$ be such that $d_{1} d_{2}=1+a$. Then $\left(d_{1} d_{2}\right)^{2} \neq 1$. Indeed, if $\left(d_{1} d_{2}\right)^{2}=1$, then $1+2 a+a^{2}=(1+a)^{2}=1$ and so $a(2+a)=0$. But $2+a$ is a unit in A and consequently $a=0$, a contradiction. So $\left(d_{1} d_{2}\right)^{2} \neq 1$. Therefore, $\left(d_{1} d_{2}\right)^{2} \in(1+J) \backslash\{1\}$ and so there exists a nonzero b in J with $\left(d_{1} d_{2}\right)^{2}=1+b$. By Lemma 3.4, $\left(d_{1} d_{2}\right)^{2}=\sigma_{1} \sigma_{2}$ for some $\sigma_{1}, \sigma_{2} \in \Delta$. Since $|G / Z(G)|=2, \sigma_{1} \sigma_{2}=\left(d_{1} d_{2}\right)^{2} \in Z(G)$. Therefore $(1+b)^{2}=\left(\sigma_{1} \sigma_{2}\right)^{2}=\left(\sigma_{1} \sigma_{2}\right) \sigma_{1} \sigma_{2}=$ $\sigma_{1}\left(\sigma_{1} \sigma_{2}\right) \sigma_{2}=1$. Hence $b(2+b)=0$ and so $b=0$, a contradiction. Consequently, if $|G / Z(G)|=2$, then $(1+J) \cap W=\{1\} \subseteq Z(G)$.

Assume that $|G / Z(G)|$ is an odd prime p. Let $d \in \Delta$. Then $d=d^{\prime \prime} \in Z(G)$ and therefore $W \subseteq Z(G)$.

Finally, assume that $|G / Z(G)|=\gamma^{n} q$ where n is a positive integer and q is odd. As $(1+J) \cap W$ is a normal subgroup of $G,((1+J) \cap W) Z(G)=G$ or $((1+J) \cap$ $W) Z(G)=Z(G)$. In order to prove that $(1+J) \cap W \subseteq Z(G)$, it suffices to prove that $((1+J) \cap W) Z(G) \neq G$. Suppose that $((1+J) \cap W) Z(G)=G$. Since $|G / Z(G)|$ is even, there exists a g in G such that the order of $g Z(G)$ in $G / Z(G)$ is 2 . As $((1+J) \cap W) Z(G)=G$, there exists a nonzero element a in J such that $1+a \in W$ and $g Z(G)=(1+a) Z(G)$. Let $w=(1+a)^{2}$. Then $w \in W \cap Z(G) \subseteq Z(W)$. Observe that w has finite order. Indeed, since $l(Z(W)) \leq 4, w=d_{1} d_{2} d_{3} d_{4}$ where each d_{i} is in Δ. As $w \in Z(G)$, an inductive argument establishes that for each positive integer $k, w^{k}=\left(d_{1} d_{2}\right)^{k}\left(d_{3} d_{4}\right)^{k}$. Let $k=|G / Z(G)|$. By Lemma 3.4, there exist $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \in$ Δ such that $\left(d_{1} d_{2}\right)^{k}=\sigma_{1} \sigma_{2}$ and $\left(d_{3} d_{4}\right)^{k}=\sigma_{3} \sigma_{4}$. Since $\sigma_{1} \sigma_{2}=\left(d_{1} d_{2}\right)^{k} \in Z(G)$ and $\sigma_{3} \sigma_{4}=\left(d_{3} d_{4}\right)^{k} \in Z(G),\left(\sigma_{1} \sigma_{2}\right)^{2}=\left(\sigma_{3} \sigma_{4}\right)^{2}=1$. Therefore $w^{2 k}=1$. Let k_{1} be the
order of w. Write $k_{1}=2^{i} k_{0}$ where i is a nonnegative integer and k_{0} is odd. Recall that $w=(1+a)^{2}$. Notice that as the order of $(1+a) Z(G)$ in $G / Z(G)$ is $2,(1+a)^{k_{0}} \neq 1$. So $(1+a)^{k_{11}}=1+b$ for some nonzero b in J. Hence $(1+b)^{2^{i \cdot 1}}=(1+a)^{2 \cdot 2^{i} k_{11}}=w^{k_{1}}=1$. Therefore

$$
b\left[2^{i+1}+\binom{2^{i+1}}{2} b+\cdots+b^{2^{i \cdot 1}-1}\right]=2^{i+1} b+\binom{2^{i+1}}{2} b^{2}+\cdots+b^{2^{\prime \cdot 1}}=0
$$

But 2^{i+1} is a unit in A and $\left(\begin{array}{c}2_{2}^{i-1}\end{array}\right) b+\cdots+b^{2^{2 \cdot 1}-1} \in J$. Consequently $b=0$, a contradiction.

Observe that in the above argument, the assumption that $l(Z(W)) \leq 4$ was only used to prove that if $|G / Z(G)|$ is even and if $w \in W \cap Z(G)$, then w has finite order. Consequently a similar proof establishes that if $Z(W)$ is a torsion group, then $(1+J) \cap W \subseteq Z(G)$ as well.

Theorem 3.8. Let A be a compact ring with identity for which 2 is a unit in A. Let G denote the group of units in A and let W be the subgroup of G generated by the set $\left\{g \in G: g^{2}-1\right\}$ of involutions of G. Suppose that $(1+J) \cap W \subseteq Z(G)$. Then the following are equivalent:
(1) $G / Z(G)$ is a finite simple group.
(2) A is isomorphic and homeomorphic to one of the following rings:
(i) $M(n, F) \times \prod_{x \in A} N_{x}$ where $M(n, F)$ is the ring of $n \times n$ matrices over a finite field F of odd characteristic for which there exists an element k in F sutisfying $k^{n}=-1$ and for each α in Λ, N_{α} is a commutative compact local ring with identity such that the characteristic of N_{x} / J_{x} is an odd prime where J_{x} is the Jacobson radical of N_{x},
(ii) $N \times \prod_{x \in A} N_{x}$ where N is a compact local ring with identity such that the characteristic of $N / J(N)$ is an odd prime and $G(N) / Z(G(N))$ is a simple group and where for each x in Λ, N_{x} has the properties described in (i), or
(iii) $\prod_{x \in A} N_{\alpha}$ where Λ is a nonempty set and for each α in Λ, N_{α} has the properties described in (i).

Proof. By Lemma 3.6, if A is isomorphic to a ring of type (i), then $G / Z(G)$ is a simple group. Therefore 2° implies 1°.

Conversely, assume that $G / Z(G)$ is a simple group. Denote $\{g \in G: l(g) \leq 2\}$ by Δ^{2}. Then $(1+J) \cap \Delta^{2} \subseteq(1+J) \cap W \subseteq Z(G)$. Therefore $(1+J) \cap \Delta^{2}=\{1\}$. Indeed, if $d_{1}, d_{2} \in$ Δ and $d_{1} d_{2} \in 1+J$, then $\left(d_{1} d_{2}\right)^{2}=\left(d_{1} d_{2}\right) d_{1} d_{2}=d_{1}\left(d_{1} d_{2}\right) d_{2}$ as $d_{1} d_{2} \in Z(G)$. So $\left(d_{1} d_{2}\right)^{2}=1$. Hence if $d_{1} d_{2}=1+a$ where $a \in J$, then $(1 \mid a)^{2}=\left(d_{1} d_{2}\right)^{2}=1$. So $a(2+a)=0$. Consequently, as 2 is a unit in A and as $a \in J, a=0$. Thus $d_{1} d_{2}=1$. Therefore by Lemma 3.5, A is isomorphic and homeomorphic to $\prod_{x \in A} N_{\alpha}$ where for each α in Λ, N_{α} is a matrix ring over a finite field having odd characteristic or N_{α} is a compact local ring with identity such that the characteristic of N_{α} / J_{α} is an odd prime where J_{α} is the Jacobson radical of N_{α}. For each α in Λ, let G_{χ} denote the group of units in N_{α}. Since $G / Z(G)$ is simple, the subset Λ_{1} of Λ defined by
$\Lambda_{1}=\left\{\alpha \in A: G_{\alpha}\right.$ is nonabelian $\}$, has at most one element. Note that for each α in $A \backslash \Lambda_{1}, N_{x}$ is a commutative ring by [3, Theorem 3.10]. Suppose that $\Lambda_{1} \neq \emptyset$. Let $\alpha \in A_{1}$. Since $G_{x} / Z\left(G_{x}\right)$ is a simple group, A is isomorphic and homeomorphic to a ring of type (i) or of type (ii) by Lemma 3.6. 「.]

Corollary 3.9. Let A be a compact ring with identity for which 2 is a unit. The following are equivalent:
(1) $G / Z(G)$ is a finite simple group and $l(W) \leq 4$.
(2) $G / Z(G)$ is a finite simple group and $l(Z(W)) \leq 4$.
(3) $G / Z(G)$ is a finite simple group and $(1+J) \cap W \subseteq Z(G)$.
(4) A is isomorphic and homeomorphic to a ring of type (i), (ii) or (iii) as described in Theorem 3.8.
(5) $G / Z(G)$ is a finite simple group and W is a torsion group.
(6) $G / Z(G)$ is a finite simple group and $Z(W)$ is a torsion group.

Proof. By Lemma 3.7, (2) implies (3). Theorem 3.8 yields that (3) implies (4). Note that if N is a compact local ring with identity for which 2 is a unit, then $W(N)=\{ \pm 1\}$ by [4, Theorem 2.9] (and in particular, $l(W(N))=1$). Consequently (4) implies (5). By Lemma 3.7, (6) implies (3) and hence (3)-(6) are equivalent. Lemma 3.6 and the above observation yield that if A is isomorphic to a ring of type (i), (ii) or (iii) as described in Theorem 3.8, then $l(W) \leq 4$. Thus (1)-(6) are equivalent.

4. Nilpotency and commutativity of W

Lemma 4.1. Let A be a compact ring with identity for which W is a nilpotent group. Then there exists a positive integer m such that for all $\sigma_{1}, \sigma_{2} \in \Delta,\left(\sigma_{1} \sigma_{2}\right)^{2^{m \prime}}=1$.

Proof. Let $\{1\}=Z_{0} \subseteq Z_{i} \subseteq \cdots \subseteq Z_{m-1} \subseteq Z_{m}=W$ be the ascending central series for W. So for all $i, 0 \leq i \leq m-1, Z_{m-i} / Z_{m-(i+1)}$ is the center of $W / Z_{m-(i+1)}$. Let $\sigma_{1}, \sigma_{2} \in \Delta$. Since Z_{m} / Z_{m-1} is abelian, $\left(\sigma_{1} \sigma_{2}\right)^{2} \in Z_{m-1}$. By Lemma 3.4, there exist $\sigma_{1}^{(2)}$ and $\sigma_{2}^{(2)}$ in Δ such that $\left(\sigma_{1} \sigma_{2}\right)^{2}=\sigma_{1}^{(2)} \sigma_{2}^{(2)}$. Since Z_{m-1} / Z_{m-2} is the center of W / Z_{m-2} and since $\sigma_{1}^{(2)} \sigma_{2}^{(2)} \in Z_{m-1},\left(\sigma_{1}^{(2)} \sigma_{2}^{(2)}\right) \sigma_{1}^{(2)} Z_{m-2}=\sigma_{1}^{(2)}\left(\sigma_{1}^{(2)} \sigma_{2}^{(2)}\right) Z_{m-2}$, that is, $\left(\sigma_{1}^{(2)} \sigma_{2}^{(2)}\right)^{2} \in Z_{m-2}$. So $\left(\sigma_{1} \sigma_{2}\right)^{2^{2}} \in Z_{m-2}$. An inductive proof then establishes that $\left(\sigma_{1} \sigma_{2}\right)^{2^{m}} \in Z_{0}=\{1\}$.

Theorem 4.2. Let A be a compact ring with identity for which 2 is a unit in A. The following are equivalent:
(1) W is a nilpotent group.
(2) A is isomorphic and homeomorphic to a product, $\prod_{x \in A} N_{x}$, where Λ is a nonempty set and for each α in A, N_{x} is a compact local ring with identity such that the characteristic of N_{α} / J_{α} is an odd prime p_{α} where J_{α} is the Jacobson radical of N_{α}.
(3) W is abelian.
(4) $W=\Delta$.

Proof. (3) and (4) are equivalent by [6, Corollary 2.9]. Assume that W is nilpotent. Let $\sigma_{1}, \sigma_{2} \in \Delta$ be such that $\sigma_{1} \sigma_{2} \in 1+J$. Then $\sigma_{1} \sigma_{2}=1+a$ for some a in J. By Lemma 4.1, there exists a positive integer m such that $\left(\sigma_{1} \sigma_{2}\right)^{2^{m}}=1$. Then $1=\left(\sigma_{1} \sigma_{2}\right)^{2^{m}}=(1+a)^{2^{\prime \prime \prime}}$ and so $0=2^{m} a+\binom{2^{\prime \cdot}}{2} a^{2}+\cdots+a^{2^{m}}=a\left(2^{m}+\right.$ $\left.\binom{2^{i, 1}}{2} a+\cdots+a^{2^{m}-1}\right)$. Since 2^{m} is a unit in A and since $a \in J, 2^{m}+\binom{2^{i \cdot 1}}{2} a+$ $\cdots+a^{2^{\prime \prime \prime}-1}$ is a unit in A. Hence $a=0$, that is, $(1+J) \cap \Delta^{2}=\{1\}$. Therefore by Lemma 3.5, A is isomorphic and homeomorphic to a product, $\prod_{x \in A} N_{x}$, where for each α in A, N_{α} is the ring of $m_{\alpha} \times m_{\alpha}$ matrices over a finite field F_{α} having odd characteristic or N_{x} is a compact Iocal ring with identity for which the characteristic of N_{α} / J_{α} is an odd prime p_{α}. Suppose that there exists an α in Λ such that N_{α} is the ring of $m_{\alpha} \times m_{\chi}$ matrices over a finite field F_{x} where $m_{x}>1$. Denote $W\left(N_{\alpha}\right)$ by W_{x}. Since W_{x} is a homomorphic image of W, W_{x} is a nilpotent group [18, Theorem 5.25, p. 90] and consequently W_{x} is solvable. By [9], $W_{x}=\left\{x \in N_{\chi}: \operatorname{det} x= \pm 1\right\}$ and $\operatorname{so} \operatorname{SL}\left(m_{x}, F_{x}\right) \subseteq W_{\chi}$ (where $\operatorname{SL}\left(m_{x}, F_{\chi}\right)=\left\{x \in N_{\alpha}\right.$: $\left.\operatorname{det} x=1\right\}$). Therefore, $\operatorname{SL}\left(m_{x}, F_{x}\right)$ is solvable [18, Theorem 5.12, p. 81]. So if Z is the center of $\operatorname{SL}\left(m_{x}, F_{x}\right)$, then $\operatorname{SL}\left(M_{x}, F_{x}\right) / Z$ is solvable as well [18, Theorem 5.13, p. 81]. By [19, Corollary, p. 80], $m_{x}=2$ and F_{x} has cardinality 3 . Therefore we may assume that W_{x} is the group, $\operatorname{GL}(2, \mathbb{Z} /(3))$, of 2×2 nonsingular matrices over $\mathbb{Z} /(3)$ by [9]. A routine calculation shows that if Z_{1} is the center of $\operatorname{GL}(2, \mathbb{Z} /(3))$, then $\operatorname{GL}(2, \mathbb{Z} /(3)) / Z_{1}$ has a trivial center. Therefore if $m_{x}>1$, then W_{x} is not nilpotent. Hence (1) implies (2).

Clearly (3) implies (1) and so it suffices to prove that (2) implies (3). Assume that (2) holds. For each α in A, let W_{x} denote $W\left(N_{\alpha}\right)$. By Theorem 2.9 of [4], for each α in Λ, W_{α} has precisely two elements. Therefore W is abelian.

Corollary 4.3. Let A be a compact ring with identity such that 2 is a unit in A. The following are equivalent:
(1) W is abelian and G / W is abelian.
(2) A is a commutative ring.
(3) G is abelian.

Proof. It suffices to prove that (1) implies (2). If W is abelian, then $A \cong \prod_{x \in 1} N_{x}$ where for each x in A, N_{x} is a compact local ring with identity such that the characteristic of N_{x} / J_{x} is an odd prime where J_{x} is the Jacobson radical of N_{x}. For each α in Λ, let 1_{α} denote the multiplicative identity of N_{α} and let G_{x} and W_{α} denote $G\left(N_{\alpha}\right)$ and $W\left(N_{x}\right)$, respectively. Note that by [4, Theorem 2.9], for each α in $\Lambda, W_{x}=\left\{ \pm 1_{\alpha}\right\}$ (and hence $W \cong \prod_{x \in A}\left\{ \pm 1_{\alpha}\right\}$). By [3, Theorem 3.10], it suffices to prove that if, in addition, G / W is abelian, then G is abelian, that is, if G / W is abelian, then G_{x} is abelian for all α in A.

Let $\alpha \in A$. As N_{x} / J_{x} is a compact local ring with identity, N_{α} / J_{x} is a finite field by [15, Theorem 16]. Thus since $g \in G_{\chi}$ if and only if $g+J_{\alpha}$ is a unit in N_{α} / J_{χ}, there exist an element g_{x} in G_{α} and a positive integer m such that $G_{\alpha}=\bigcup_{n=0}^{m}\left(g_{\alpha}^{n}+J_{\alpha}\right)$. Observe that $x y-y x$ for all x and y in J_{x}. Indeed, if $x y+y x$ for some x and y in J_{x}, then $\left(1_{x}+x\right)\left(1_{x}+y\right)=-\left(1_{x}+y\right)\left(1_{x}+x\right)$ since G_{x} / W_{x} is abelian and since $W_{x}=\left\{ \pm 1_{\alpha}\right\}$.

So $2 \cdot 1_{x}=-[y x+x y+2(x+y)] \in J_{\alpha} \cap G_{\alpha}$, a contradiction. Similarly, $g_{\alpha} x=x g_{\alpha}$ for all x in J_{α}. Therefore as $G_{\alpha}=\bigcup_{n=0}^{m}\left(g_{x}^{n}+J_{\alpha}\right), G_{x}$ is abelian and consequently (1) implies (2).

References

[1] N. Bourbaki, Topologie Générale (Hermann, Paris, 1960) Chapters 3 and 4.
[2] C. Chevalley, Theory of Lie Groups (Princeton University Press, Princeton, NJ, 1946).
[3] J. Cohen and K. Koh, The group of units in a compact ring, J. Pure and Appl. Algebra 54 (1988) 167-179.
[4] J. Cohen and K. Koh, Involutions in a compact ring, J. Pure Appl. Algebra 59 (1989) 151-168.
[5] J. Cohen and K. Koh, The subgroup generated by the involutions in a compact ring, Comm. Algebra 19 (1991) 29232954.
[6] J. Cohen and K. Koh, The structure of compact rings, J. Pure Appl. Algebra 77 (1992) 117-129.
[7] R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957) 372-373.
[8] W. Feit and J. Thompson. Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
[9] W. Gustafson, P. Halmos and H. Radjavi, Product of involutions, Linear Algebra Appl. 13 (1976) 157-162.
[10] E. Hewitt and K. Ross, Abstract Harmonic Analysis I (Springer, Berlin, 1963).
[11] E. Hewitt and K. Ross, Abstract Harmonic Analysis Il (Springer, Berlin, 1970).
[12] N. Jacobson, Basic Algebra I (Freeman, San Francisco, 1974).
[13] N. Jacobson, Basic Algebra II (Freeman, San Francisco, 1980).
[14] N. Jacobson, Structure of Rings, Vol. 37 (A.M.S. Coll. Pub., Providence, RI, 1968).
[15] I. Kaplanksy, Topological rings, Amer. J. Math. 69 (1947) 153-183.
[16] S. Lang, $S L_{2}(\mathbf{R})$ (Springer, New York, 1985).
[17] R. Raghavendrun, Finite associative rings. Composition Math. 21 (1969) 195229.
[18] J. Rotman, An Introduction to the Thcory of Groups (Allyn and Bacon, Boston, 3rd ed., 1984).
[19] M. Suzuki, Group Theory I (Springer, Ncw York, 1982).

[^0]: * Corresponding author. E-mail: Cohen@math. ncsu.edu.

