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Abstract

For a compact Hausdorff ring, one observes that the group of units is a totally disconnected
compact topological group and is a finite simple group if and only if it possesses no nontrivial
closed normal subgroups. Three classification theorems for compact rings are now given. First,
those compact rings with identity having a finite simple group of units are identified. Second, a
classification of all compact rings 4 with identity for which 2 is a unit in 4, G modulo the center
of G is a finite simple group and the length of W is less than or equal to 4 (or equivalently,
W is a torsion group) is given where G is the group of units in 4 and W is the subgroup of
G generated by {g€ G: g* = 1}. Finally, those compact rings with identity having 2 as a unit
and for which W is a nilpotent group are identified. © 1997 Elsevier Science B.V.

1991 Math. Subj. Class.. Primary 16A80, 13]99; Secondary 16A48, 16A25

1. Introduction

If A4 is a compact Hausdorff topological ring with identity and if G is the group
of units in A4, then G is a compact topological group by [1, Exercise 12h, p. 119; 7,
Theorem]. Since 4 is a totally disconnected space, G is 0-dimensional [15, Theorem §;
10, Theorem 3.5, p. 12]. Consequently, if = is an irreducible representation of G in a
Hilbert space, then n(G) is a finite group [11, Corollary 28.19, p. 69]. In particular, G
contains no nontrivial closed normal subgroups if and only if G is a finite simple group.

In Section 2, we show that G is a finite simple group if and only if 4 is isomorphic
and homeomorphic to the ring [ [, , Z/(2), endowed with the product topology, where
A is a nonempty set and Z/(2) is the ring of integers modulo 2 or 4 is isomorphic
and homeomorphic to ([T,c,Z/(2)) x Ao, endowed with the product topology, where
A is an arbitrary set and Ao is one of the following rings:
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(1) a finite field of cardinality 3 or cardinality 2" where # is a positive integer such
that 2" — 1 is prime,

(2) the set of r x n matrices over Z/(2) for some n > 3,

(3) Z/(4), the ring of integers modulo 4,

4) Z/(z)[x]/(xz) where Z/(;)[x] is the ring of polynomials in x with coefficients in

Z/(2) and (x?) is the ideal of 7/)[x] generated by x2, or

(5) the set of all 2 x 2 upper triangular matrices over Z/(2).

If G i1s a group, let Z(G) denote the center of G and let W be the subgroup of
G generated by the set of involutions 4 = {g€ G: ¢g* = 1}. If g € W, the length
I{g) of g is the smallest positive integer m such that there exist wy, wa, ..., wy, in 4
with g = wyw, - - w,. For each subgroup H of W, define the length /(H) of H by
I(H) = sup,cy [(g). There are compact rings with identity for which /(W) is infinite,
and /(W) is finite if and only if W is compact. (See [5].) In [9], Gustafson et al.
proved that if G is the group of nonsingular matrices over a field, then (W) < 4.
Consequently, if 4 is a semisimple compact ring with identity, then /(W) <4 as 4 is
isomorphic to the product [],. , M,, where each M, is a matrix ring over a finite field
[15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 171]. In Section 3 we show
that for a compact ring 4, G/Z(G) is a finite simple group if and only if it possesses no
nontrivial closed normal subgroups and then give a characterization of those compact
rings 4 with identity for which 2 is a unit in 4, G/Z(G) is a finite simple group and
(W) < 4. In particular, we show that 4 has the above properties if and only if G/Z(G)
is a finite simple group and W is a torsion group. Finally, in Section 4, we prove that
if 2 is a unit in a compact ring A4 with identity, then the following are equivalent:

1. W is a nilpotent group.

2. W is abelian,

3. A4 is isomorphic and homeomorphic to the product er 1Ny, where for each « in
A, N, is a compact local ring with identity such that the characteristic of Ny/J, is an
odd prime p, where J, is the Jacobson radical of N,.

As a corollary, we obtain that if 4 is a compact ring with identity for which 2 is a
unit, then G is abelian if and only if W and G/W are abelian.

Henceforth if 4 is a ring with identity, G, J, 4 and W will denote the group of
units in 4, the Jacobson radical of 4, the subset {g€ G: g° = 1} of involutions of G
and the subgroup of G generated by 4, respectively. In order to avoid confusion, we
will sometimes denote G, J, 4 and W by G(A4), J(4), A(A) and W(A), respectively.

2. Compact rings having a simple group of units
Henceforth, all compact topologies are assumed to be Hausdorff.

Lemma 2.1. Let G be a totally disconnected compact group. Then G possesses no
nontrivial closed normal subgroups if and only if G is a finite simple group.



J.-A. Cohen, K. Koh!Journal of Pure and Applied Algebra 119 (1997) 13-26 15

Proof. Suppose that G contains no nontrivial closed normal subgroups. Since G is
a compact group, G has a unitary irreducible representation in the group GL(V') of
automorphisms of a finite dimensional complex vector space V' by [16, Theorem 2,
p. 27]. By hypothesis, this representation is faithful and hence G is isomorphic to a
closed subgroup of GL(V). Therefore G is a Lie group [2, Corollary, p. 135]. Con-
sequently, as each component of a Lie group is open [2, Proposition 1, p. 40], G is
endowed with the discrete topology. Thus G is a finite group.
The converse is clear. [

Theorem 2.2. Let G be the group of units of a compact ring A with identity. (1) G
is a totally disconnected compact topological group. (2) G is a finite simple group if
and only if G possesses no nontrivial closed normal subgroups.

Proof. By [l, Exercise 12h, p. 119; 7, Theorem], G is a compact topological group.
As A is totally disconnected [15, Theorem 8], G is totally disconnected as well. (2)
follows from Lemma 2.1. [J

Recall that an idempotent e in a ring 4 is primitive if e is not the sum of two
nontrivial orthogonal idempotents in 4.

Lemma 2.3. Let A be a compact ring with identity and suppose e +J is a primitive
idempotent in A/J. If [ is any idempotent in A such that f +J = e+ J, then f is
primitive.

Proof. If / were not primitive, then there would exist nontrivial orthogonal idem-
potents f and f, in 4 such that f = /| + f>. Consequently as f +J is a primitive
idempotent in 4/J, either f1 +J =J or f> +J =J, that is, either f, € J or f, € J.
But J contains no nontrivial idempotent since @ — 0 for all @ in J [15, Theorem 15].
Hence f is a primitive idempotent in 4. O

Lemma 2.4. Let A be a compact ring with identity such that AJJ = [],.,Z/(2)
Jor some nonempty set A. For each f in A, let Eg = (xy)qecq Where xp = 1, the
multiplicative identity of 7/(2) and for o # B, x, = 0, the additive identity of 7/(2).
Then there exists a family {e,: a€ A} of primitive orthogonal idempotents in A such
that e, +J = E, for all o in A, ZueA e, = 1 and e, Ae,feJey, = 7/(2) for all o in A

Proof. Well-order A. If A has no largest element, let A* = A. Otherwise, adjoin oo
to A and extend the ordering from A to AU {oc} by declaring that oo is the largest
element in A U {oc}. [n this case, let A’ = AU {oc}. Let iy be the smallest element
of A. For each 2 € A'\{/o}, define F, by F;, = > _, E;. So F) = (V,)aca where

p<i

y. =1 forall « < 2 and y, = 0 for all « > 4. Clearly, if 4, 4, € A’\{49} where
/1 < i, then F; F;, = F,,F; = F;,. Moreover, if 4 is a limit ordinal of A"\ {4}, then
F; =lim,.; F,. Hence by [15, Lemma 12], there exists a family {h;: 2 € A'\{A}}
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of idempotents in 4 such that h; h,, = hy,h;, = h), for all 4p < A4 < 4, and
h,+J =F) forall 2€ A"\{4p}. Let h;, be the additive identity of 4. For each 1 € 4,
let y(4) denote the smallest clement of {p € A" 4 < p} and let e; = A,y — hs. Then
{e;: 4 € A} is a family of orthogonal idempotents in A4 such that for each « in A,
e, +J = FE, and e,Ae,jeJe, = 7/(2). As each E, is a primitive idempotent in A/J,
Lemma 2.3 yields that each e, is a primitive idempotent in 4. So it suffices to prove
that > . e, = 1.

First notice that 216 1 €4 exists. Indeed, as 4 is compact, there exists a fundamental
system of ideal neighborhoods of zero in A [10, Theorem 3.5, p. 12, Theorem 7.7,
p. 62; 15, Theorem 8 and Lemma 9]. Since 4 is complete, it suffices to show that
if U is an open ideal of 4 and if M = {x € A: e, ¢ U}, then M is finite. Let
U be an open ideal of A. Then 4/U is a compact discrete ring and hence a fi-
nite ring. In particular, 4/U has finitely many idempotents. Moreover, if % and
are distinct elements of M, then e, + U # ez + U. Indeed, if e, + U = ey + U,
then ¢, + U = ei +U = e+ U = 0+ U = U, a contradiction. Hence M is
finite and so ) ., e, exists. (The above proof is an adaptation of one given by
Seth Warner in an unpublished manuscript.) Since {e,: x € A} is a family of ortho-
gonal idempotents in 4, ) . e, is an idempotent as well. Thus 1 —>" e, is an
idempotent in 4. By construction, 1 — " _ e, € J and therefore, as in the proof of

Lemma 23,1 -3 _ e, =0. [J

Lemma 2.5. Let A be a ring with identity and let T denote a nonempty set of idem-
potents in A such that for all f in T, f +J is a central idempotent in A/J. If I' is
contained in the centralizer of J in A, then I is contained in the center of A.

Proof. Let e € I and let x € 4. Since (e +J)x+J)=(x+JI e+ J), ex —xe € J.
Denote ex—xe by a. Then ae = ea and so ea = e’a = e(ea) = e(ae) = e(ex—xe)e = 0.
Thus 0 = ea = e(ex — xe) = ex — exe and hence ex = exe. Since ae = ea = 0,0 =
ae = (ex — xe)e and consequently, exe = xe as well. Therefore e is in the center of A.

O

Lemma 2.6. Let A be a nonempty set and for each a € A, let F, be a finite field
endowed with the discrete topology. Let A = [],c,Fx endowed with the product
topology. If I is a nonzero closed left (right) ideal of [],c 4 Fx, then there exists a
nonempty subset Ay of A such that [ =],., By where B, = F, for all « in A, and
B, = {0,} for all « € A\A, (where 0y is the additive identity of Fy).

Proof. For each « in A, let 1, denote the multiplicative identity of F,. Define A; by,
Ay = {« € A: there exists {(xg)gca in I with x, # 0,}. For each « in Ay, let By = F,
and for each « in A\A,, let B, = {0,}. Clearly / C[],. , Ba-

We first prove that given any a in A, the element s, of 4 defined by, so = (v4)peca
where v, = 1, and vg = Oy for § # x, is an element of /. Indeed, let (xs)pc4 € / be
such that x, # 0, and let y, € F, be such that x, v, = ysx, = 1,. Define (zg)pca € 4
by, Zy = Yy and zp = O/j for B 7é %. Then s, = (z,;>/;€,1(x,3)/;€,1 el
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Now let (dy)sen € [[,c4Ba- As [ is closed, it suffices to prove that (d,)xeq € 1.
So let U be a neighborhood of (d,),c 4 in 4. Without loss of generality, we may assume
that there exists a finite subset A, of A such that U = [] ., U, where U, = {d,}
for all « in A; and U, = F, for all « € A\A,. Let A5 C A; be such that for all «
in A5, d, # 0, and for all a in A\A5, dy = 0,. For each o in A, let t, = (cg)pea
where ¢, = d, and cg = Oy for all f # «. Recall that for each « in A}, s, € 1. Thus
Y acn taSx €INU and 50 (dy)seq € 1. O

Recall that a ring A4 with identity is called a Jocal ring if the set of nonunits in 4 is
an ideal of A.

Lemma 2.7. Let A be a compact ring with identity having characteristic two such that
J =1{0,a} for some nonzero a in A4 and AjJ = 1], , Z/(2) for some nonempty set A.

Then for some indexing set I', A is isomorphic and homeomorphic to (H/ﬁer Z/(Z)) X
Ao where Ay is one of the following rings:
(1 Z/(g)[x]/ X where Z/)2[x] is the ring of polynomials in x with coefficients in
(x%)

Z/(2) and (x*) is the ideal of Z)2[x] generated by x*; or
(2) the set of all 2 x 2 upper triangular matrices over Z/(2).

Proof. First notice that as ¢ is a unit in 4 if and only if g+ J is a unit in 4/J, G =
1 4+.J. By Lemma 2.4, there exists a primitive idempotent e in 4 such that ea # 0 and
edefeJe = Z/(2). In particular, as ea € J, ea = a. Recall that the Pierce decomposition
of A4 relative to e yields that 4 = ede B (1 — e)A(l —e) T ed(l —e) & (1 — e)de. (See
for example [14, p. 48].)

Suppose that eae = 0. We first show that 4 = ede®(1 —e)A(1 —e)Ded(1 —e) where
J = eA(1l —e). Indeed, as eae = 0, ae = 0 and thus (1 —e)a(l —e) =(1 —e)a = 0. So
a = eae+(1—e)a(l —e)+tea(l—e)+(l—e)ae = ea(1—e) and consequently J C ed(1—e).
Notice that if x € e4(1 —e), then x> = 0 and hence (1 +x)(1—x) = (1 —x)(1+x) = 1.
Thus if x € ed(1 —e), then 1 +x € G = 1 4+ J. Therefore, eA(1 — ) CJ. Similarly
as (1 —e)de)* = {0}, (1 —e)de CJ = eA(l — e) and hence (1 — e)de = {0}. So
A =ede (1 —e)A(l —e) @ eA(l — e) where eA(1 —e) = J.

Observe next that as eae = 0, eJe = {0} and hence ede is a finite field having
two elements. Moreover as (1 —e)a(l —e) = 0 and as (1 — e)J(1 — e) is the Ja-
cobson radical of (1 — e)A(1 — e) [14, Proposition 1, p. 48], (i —e)4(l —e) is a
compact semisimple ring with identity 1 —e # 0. Furthermore, 1 ~ ¢ is the only unit in
(1—e)A(1—e). Indeed, if x and y are elements in (1 —e)4(1—¢) such that x # 1 —e but
xy=yx=(l—e), thenasxe =ex =ye =ey =0, (x+ely+e)=(y+e)x+e)=1.
Therefore x +e € G =1+J ={l,1+a}. Sincex #1~e,x+e =1+a. Con-
sequently, ex + e = e +ea = e +a and so 0 = ex = a, a contradiction. Thus
(1 — e)A(1 — e) is isomorphic and homeomorphic to [[,., Z/(2) for some nonempty
set Iy by [15, Theorem 16]. For simplicity of notation, assume that (1 —e)A4(1 —e) =
[Ler, Z/2).
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Let a” denote the right annihilator of ¢ in 4 and let g : (1 —e)4(1 —e) — J be given
by g(x) = ax for all x in (1 —e)A4(1 —e). Observe that g is a surjective additive group
homomorphism with kernel a” N (1 —e)4(1 ~¢e). So @ N (1 —e)A(1 — ¢e) is a closed
subset of (1 —¢e)A(1~e) and hence by Lemma 2.6, there exists a subset I'; of I'j such
that a” N (1 — e)A(1 ~ e) = [, B, where B, = Z/(2) for all o in I'; and B, = {0}
otherwise (where 0 is the additive identity of Z/(2)). In particular, @' N(1 —e)A(1 —e) is
a two-sided ideal of (1 —e)4(1 —e). Moreover, as (1 —e)A(1 —e)/a" N(1 —e)4{] —e) =
J, the cardinality, |I')\\I'z|, of I')/\I'; is |. Let g € I'/\\I'; and let [ = err, C,
where C, = Z/(2) and for all x € I'\{%}, C, = {0}. Then (1 —e)4(1 —¢) =
ITGa Nl —e)d(l —e)and so 4 =ede® [/ Sa" N(1 —e)A(1 —e)] & ed(1 — e).
A routine proof shows that ede &/ P ed(l — e) and &" N (1 — e)4(l — e) are ideals
of A, the first of which has 8 elements and the second of which is isomorphic and
homeomorphic to [T,c,, Z/(2) or to {0} if I’y = 0.

By construction, / = Z/(2). So if i is the multiplicative identity of /, then e+ is the
multiplicative identity of the ring ede B 7 < eA(1 —¢). Notice that ede ! S ed(1 —e)
is noncommutative as ea # ae. Thus ede & [ § e4(l — e) is isomorphic to the ring
of 2 x 2 upper triangular matrices over Z/(2) by [17, Theorem 14]. Consequently, if
eae = 0, then A4 is isomorphic and homeomorphic to 4y or to (Hg{er2 Z/(2)) x Ag
where 4 is the ring of 2 x 2 upper triangular matrices over Z/(2).

Finally, suppose that eae # 0, that is, suppose that eae = a. We first show that e is
in the center of 4. Indeed, let x € 4. As A/J is commutative, ex — xe € J. Therefore
ex —xe =0 or ex—xe = a. If ex —xe = a, then e’x — exe = ea = a = ex —xe and hence
exe = xe. Similarly, exe = ex and so in either case ex = xe. Thus e is in the center of
A. In particular, ed(1 —e¢) = (1 — e)de = {0} and 50 4 = ede & (1 — e)A(1 — e).

Recall that edefede = Z/(2), a finite field having two elements. So ede is a local
ring with identity having four elements and having characteristic 2. Consequently, by
[3, Theorem 2.5], ede = Z/(z)[x]/(xg)‘

Since ea = a,(l — e)a(l — ¢) = 0. Therefore, as before, if 1 — e £ 0, then
(1 — e)A(1 — e) is isomorphic and homeomorphic to Haef Z/(2) for some nonempty
set ['. Otherwise, (1 — e)4(1 —e) = {0}. Thus A4 is isomorphic and homeomorphic to

(Hzg Z/(Z)) x Zjll 2, of to Zil) 2y D

Theorem 2.8. Let A be a compact ring with identity and let G be the group of units
in A. G is simple if and only if A is isomorphic and homeomorphic to 1], , Z/(2) for
some nonempty set A or A is isomorphic and homeomorphic to (Hze P Z/(Z)) x Ao
where A is an arbitrary set and Ay is one of the following rings:

(1) a finite field of cardinality 3 or 2" for some positive integer n such that 2" — 1
is a prime,

(2) the set of n x n matrices over Z/(2) where n is a positive integer greater than
or equal to 3,

(3) Z/(4),
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(4) Z/’(z)[x]/(xz), or
(5) the ring of 2 x 2 upper triangular matrices over 7/(2).

Proof. As GL(n,Z/(2)) is simple for all » > 3 [19, Theorem 9.9, p. 78], if 4 is one
of the rings described above, then G is a finite simple group. Conversely, assume that
G is a simple group. By Theorem 2.2, G is finite.

First assume that 4 is semisimple. By [15, Theorem 16], 4 is isomorphic and homeo-
morphi¢ to erA M, where cach M, is the set of n, X n, matrices over a finite field
F,. For each « in A, let G, denote the group of units in M,. As G is a simple group,
the set A, defined by Ay = {x € A : |G,| > 1} has at most one element. Moreover,
if « € Ay, then G, is a finite simple group. Thus for all # in A\A,, My = Z/(2) and
if A) = {«} # 0, then M, is a finite field such that the cardinality of G, is a prime
or M, is isomorphic to the ring of n x n matrices over Z/(3) for some n > 3 [19,
Theorem 9.9, p. 78].

Suppose then that J # {0}. Since 1+J is a closed normal subgroup of G, G = 1 +J.
Consequently, 4/J is isomorphic and homeomorphic to [],. , Z/(2) for some nonempty
set A by [15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 171].

Since J is finite, J?> # J by Nakayama’s Lemma [13, Theorem, p. 412]. Thus as
1 +J?% is a closed normal subgroup of | +J, J> = (0). In particular, as G = 1 +J,
G is abelian and so the cardinality of G is a prime p. Note that 2 € J since 4/J =
[1,c4 Z/(2). Therefore as J? = (0), the characteristic of 4 is either 2 or 4. Let a €
J\{0}. If the characteristic of 4 is 2, then (1+a)® = 1 and hence the order of 1+4a is 2.
Thus p = 2. On the other hand, if the characteristic of 4 is 4, then 2 € J\{0} and
(1+2)? = 1. Therefore in either case, p =2, thatis 1 +J = G = {1, 1+ a} for some
nonzero a in J. By Lemma 2.7, it suffices to show that if 4 has characteristic 4, then 4
is isomorphic and homeomorphic to (Hﬁef Z/(2)> x Z/(4) for some indexing set I'.

Assume then that the characteristic of 4 is 4. We first prove that 4 is a commutative
ring. As 2 € J\{0}, J = {0,2} and hence by Lemma 2.5, if e is any idempotent in
4, then e is contained in the center of A. Consequently, 4 is commutative. Indeed, let
x € A. Then x+J is an idempotent in 4/J and hence there exists an idempotent ¢ in A
such that x +J = e+J [15, Lemma 12]. Thus x € {e, e +2} and so x is in the center
of A. Therefore by [15, Theorem 17], 4 is isomorphic and homeomorphic to [Lea N«
where for each « in A, N, is a commutative, local, compact ring with identity. For
each x in A;, let G, denote the group of units in N, and let J, denote the Jacobson
radical of N,. As A/J =[] ., Z/(2), for each x in Ay, N,/J, = Z/(2). Let A; be the
subset of A, defined by, A; = {x € Ay: |G,| > 1}. Then for all z € A\ A, |G| = 1
and hence N, = 7/(2). As before, since G is simple, A, has at most one element.
But as A has characteristic 4, A, # 0. Let A2 = {=}. Then A is isomorphic and
homeomorphic to (erm\m Z/(Z)) X Ny, . 1t suffices to show that N, =7/(4).

Observe that N, has characteristic 4 as 4 has characteristic 4. Moreover, as |G| = 2,
|Gy, | =2 as well. Therefore [N+, | = 4 since N, /J. , = £/(2). So N, is a 4-element
ring with identity having characteristic 4, that is, N, , = 2/(4). U
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Corollary 2.9. Let A be a compact ring with identity and let G be the group of units
in A. The following statements are equivalent:
(a) G possesses no nontrivial closed normal subgroups.
(b) G is a finite simple group.
(¢) G is isomorphic to one of the following finite simple groups:
(1) the trivial group,
(2) Z/(2),
(3) Z/(2" — 1) where 2" — 1 is a prime or
(4) GL(n, Z/(2)) where n > 3.

Proof. The corollary follows from Theorems 2.2 and 2.8. [J

3. Simplicity of G/Z(G)

Throughout this section, unless otherwise stated, 4 is a compact ring with identity.
For each subgroup U of ¢, we will denote the center of U by Z(U).

Lemma 3.1. Z(G) is a closed normal subgroup of G and G/Z(G) is a compact totally
disconnected group.

Proof. The fact that Z(G) is a closed subset of G follows from the continuity of the
map (x,y) — xyx~'y~!. Since G is totally disconnected by Theorem 2.2, G/Z(G) is
also totally disconnected {10, Theorem 7.11, p. 63]. [

Lemma 3.2. G/Z(G) is a finite simple group if and only if G/Z(G) has no nontrivial
closed normal subgroups.

Proof. The result follows from Lemmas 2.1 and 3.1. [

Lemma 3.3. If G/Z(G) is a finite simple group, then either W = Z(W') or W/Z(W ) =
G/Z(G).

Proof. Assume that W # Z(W). Since WZ((G) is a normal subgroup of G containing
Z(G), WZ(G) = Z(G) or WZ(G) = G. If WZ(G) = Z(G), then W CZ(G) and hence
W = Z(W), a contradiction. So WZ(G) = G. Therefore G/Z(G) = WZ(G)/Z(G) =
W/W NZ(G). In particular, W/W NZ((G) is a simple group. Clearly, WNZ(G) CZ(W).
Therefore since W/W N Z(G) is simple and since W # Z(W') by assumption, Z(W') =
W NZ(G). So G/Z(GY= W/Z(W).

As in Section I, for each w € W, define the length I(w) of w to be the smallest
positive integer m such that there exist wy, wa, ..., W, in 4 with w = wiwy - - - w,,. For
each subset S of W, let /(S) = sup{/(s): s € S}.
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Lemma 3.4. Let w € W be such that I(w) < 2. Then for each positive integer n,
I(w") < 2.

Proof. The result clearly holds if /(w) = 1, that is, if w® = 1. So assume that
[(w) = 2. Let d|,d> € A be such that w = d|d, and let n be a positive integer.
If n = 2k + 1 for some positive integer k, then w" = [(d d2)*d][d2(d d;)*] where
[(didyY¥d\ ) = [da{d d2)]? = | and so I(w") < 2. If n is an even integer, then
w' = [(d|d2)”_2d|][d2d1d2] where [(dldz)nizddz = (d2d1d2)2 = 1 and so once
again, /(w") < 2. O

The following was proved in [6].

Lemma 3.5. Suppose that 2 is a unit in A. The following are equivalent:

() {g e +2)nW: ig) <2} = {1},

2) (1+)ynw ={1}.

(3) A4 is isomorphic and homeomorphic to ], , N, where for each x in A, N, is
a matrix ring over a finite field of odd characteristic or Ny is a compact local ring
with identity such that the characteristic of Ny/J, is an odd prime where J, is the
Jacobson radical of N.,.

Proof. See [6, Theorem 2.6]. [

Lemma 3.6. Let F be a finite field having odd characteristic, let n be a positive
integer and let A = M(n,F), the ring of n x n matrices over F.

(1) W={xed:detx = 1} and (W) < 4.

(2) ZWHY=Z(GynW.

(3) W/Z(W) is simple if and only if there is a k in F with k" = —1.

Proof. (1) holds by [9]. Clearly (2) and (3) hold when n = 1. So assume that n > 2.
Notice that since F has odd characteristic, if w € G, then wdiag(1,1,...,1,—1) =
diag(1,1,...,1,—1)w if and only if

0

B :
0
0...0a,,

for some nonsingular matrix B in M(n—1, F') and for some a,, in F\{0}. In particular,
if w € Z(W), then w has the above form. So for all w in Z(W) and for all
in F\{0}, wdiag(1,1,...,1,k) = diag(1,1,.... Lk)w. As G = W{diag(1,1,...,1,k):
ke F\{0}} [18, Lemma 8.13, p. 163], Z(W)C Z(G) and hence (2) holds.

Denote {x € A: det x = |} by SL(n,F). By (1) and (2), Z(W) = {of: o" = L1}
where / is the n x n identity matrix in 4. Hence as Z(SL(n, F)) = {al: «" = 1} [18,
Theorem 8.15, p. 164], Z(SL(n, F)) = SL(n, F) N Z(W).
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Suppose there is a k& in F with &" = —1. Since k&I € Z(W) and det(k/) =
—1, SL(n,F)YZ(W) = W. Therefore, W/Z(W) = SL(n,F)Z(W)/Z(W) = SL(n,F)/
(SL(n, F) N Z(W)) = SL(n,F)/Z(SL(n,F)) = PSL(n,F), the projective unimodular
group. Therefore if n > 3, then W/Z(W) is simple by the Jordan-Dickson Theorem
[18, Theorem 8.27, p. 174]. Since there exists a & in F with k" = —1, if n = 2, then
the cardinality of F must be greater than 3. Consequently, W/Z(W) is simple by the
Jordan-Moore Theorem [18, Theorem 8.19, p. 167].

Conversely, assume that W/Z(W) is simple. If for all k in F, k" # —1, then Z(W) =
{al: o" = 1} and hence SL(n,F)/Z(W) is a proper normal subgroup of W/Z(W), a
contradiction. Therefore (3) holds. [J

Lemma 3.7. Suppose that 2 is a unit in A and that G/Z(G) is a finite simple group.
If HWZW)) <4 or if Z(W) is a torsion group, then (1 +J)YNW CZ(G).

Proof. Assume that /(Z(W)) < 4. By Lemma 3.2, since G/Z(G) is a simple group,
G/Z(G) is finite. Therefore by the Feit-Thompson Theorem [8, Theorem, p. 775], the
order, |G/Z(G)|, of G/Z(G) is 1, a prime p or 2"g where # is a positive integer and
g is an odd integer. The result clearly holds if |G/Z(G)| =1 and so we may assume
that |G/Z(G)) is a prime p or |G/Z(G)]| is even.

Suppose first that |G/Z(G )| =2. We will prove that (1+/)NW = {1}. By Lemma 3.5
it suffices to show that if w € (1 +J)N W and I(w) <2, then w= 1. Let d|,d, € 4
where d\d, € 1 +J. If did> # 1, let a € J\{0} be such that d1d, = 1 4+ a. Then
(did2)* # 1. Indeed, if (d1d2)* = 1, then 1 +2a+a*> = (1 +a)*> = | and so
a(2 +a) =0. But 2+ ¢ is a unit in 4 and consequently a = 0, a contradiction. So
(d\dy)* # 1. Therefore, (d1d;)* € (1 +J)\{1} and so there exists a nonzero b in J
with (d,d2)* = 1 + b. By Lemma 3.4, (d\d2)* = g0, for some aj,0, € 4. Since
|G/Z(G)| = 2, 102 = (d1d2)?* € Z(G). Therefore (1 + b)* = (0102)* = (0102)0102 =
61(6162)62 = 1. Hence b(2 + b) = 0 and so b = 0, a contradiction. Consequently, if
|G/Z(G)| =2, then (1 +J)NW = {1} CZ(G).

Assume that |G/Z(G)| is an odd prime p. Let d € 4. Then d = d? € Z(G) and
therefore W C Z(G).

Finally, assume that |G/Z(G)| = 2"q where n is a positive integer and ¢ is odd.
As (1 +J)N W is a normal subgroup of G, (1 +J)NW)Z(G) = G or ((1 +J)N
W)YZ(G) = Z(G). In order to prove that (1 +.J) N W CZ(G), it suffices to prove
that ((1 +J)N W)Z(G) # G. Suppose that ((1 +J)N W)Z(G) = G. Since |G/Z(G)|
is even, there exists a ¢ in G such that the order of ¢Z(G) in G/Z(G) is 2. As
(1 +J)YN W)YZ(G) = G, there exists a nonzero element @ in J such that I +a &€ W
and gZ(G) = (1 + a)Z(G). Let w = (1 +a)*. Then w € W N Z(G)C Z(W). Observe
that w has finite order. Indeed, since /(Z(W)) < 4, w = d,d2d3d4 where each d; is
in 4. As w € Z(G), an inductive argument establishes that for each positive integer
k, wh = (d\d)(dsds ). Let k = |G/Z(G)|. By Lemma 3.4, there exist 6, 02, 03, 04 €
A such that (d1d>)* = ¢,02 and (d1ds)f = 0304. Since g10; = (dd>)t € Z(G) and
0304 = (d3ds)* € Z(G), (6102)* = (5304)* = 1. Therefore w?# = 1. Let k; be the
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order of w. Write k| = 2'4, where i is a nonnegative integer and kg is odd. Recall that
w = (1 +a)?. Notice that as the order of (1+a)Z(G) in G/Z(G) is 2, (1+a)* # 1. So
(1+a)* =145 for some nonzero b in J. Hence (1 +5) ' = (1+a)??h = wh = 1.
Therefore

i+l 1 ; i+l vl
hl:21+1+(22 >b++b2’ —ljl :2l+lb+(22 >b2++b2 = 0.

But 2" is a unit in 4 and (Zlgl)b+ =) Consequently b = 0, a
contradiction.

Observe that in the above argument, the assumption that /(Z(W)) < 4 was only
used to prove that if |G/Z(G)| is even and if w € W N Z(G), then w has finite
order. Consequently a similar proof establishes that if Z(W) is a torsion group, then
N+J)NWCZ(G) as well. I

Theorem 3.8. Let A be a compact ring with identity for which 2 is a unit in A. Let
G denote the group of units in A and let W be the subgroup of G generated by the
set {g€ G: g* = 1} of involutions of G. Suppose that (1 +JYNW CZ(G). Then the
Jollowing are equivalent:

(1) G/Z(G) is a finite simple group.

(2) 4 is isomorphic and homeomorphic to one of the following rings:

(1) M(n,F) x HleA N, where M(n,F) is the ring of n X n matrices over a
finite field F of odd characteristic for which there exists an element k in F satisfying
k" = —1 and for each o« in A, N, is a commutative compact local ring with identity
such that the characteristic of N /J, is an odd prime where J, is the Jacobson radical
of N,

(i) N x erA N, where N is a compact local ring with identity such that the
characteristic of N/J(N) is an odd prime and G(N)/Z(G(NY) is a simple group and
where for each « in A, N, has the properties described in (i), or

(iit) [T,ecq Nx where A is a nonempty set and for each o in A, N, has the
properties described in (i).

Proof. By Lemma 3.6, if 4 is isomorphic to a ring of type (i), then G/Z(G) is a
simple group. Therefore 2° implies 1°.

Conversely, assume that G/Z(G) is a simple group. Denote {ge G: I(g) < 2} by 4°.
Then (14J)NA2 C(1+J)NW C Z(G). Therefore (1+J)NA%2 = {1}. Indeed, if d\, d, €
Aand d\dy € | +J, then (d1dy)* = (d\d2)d d2 = d\(d\dy)d> as d\d> € Z(G). So
(d1d2)* = 1. Hence if didy = 1 +a where a € J, then (1 + a)* = (d\d,)* = 1.
So a(2 4+ a) = 0. Consequently, as 2 is a unit in 4 and as @ € J,a = 0. Thus
d\d; = 1. Therefore by Lemma 3.5, 4 is isomorphic and homeomorphic to HJ(GA N,
where for each « in A, N, is a matrix ring over a finite field having odd characteristic
or N, is a compact local ring with identity such that the characteristic of N,/J, is an
odd prime where J, is the Jacobson radical of N,. For each x in A, let G, denote
the group of units in N,. Since G/Z(G) is simple, the subset A, of A defined by
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Ay = {2 € A: G, is nonabelian}, has at most one element. Note that for each « in
A\A|, N, is a commutative ring by [3, Theorem 3.10]. Suppose that A; # (). Let
o € Ay. Since G,/Z(G,) is a simple group, 4 is isomorphic and homeomorphic to a
ring of type (i) or of type (ii) by Lemma 3.6. [

Corollary 3.9. Let A be a compact ring with identity for which 2 is a unit. The
Sfollowing are equivalent:

(1) G/Z(G) is a finite simple group and (W) < 4.

(2) G/Z(G) is a finite simple group and I(Z(W)) < 4.

(3) G/Z(G) is a finite simple group and (1 +J)YNW C Z(G).

(4) A is isomorphic and homeomorphic to a ring of type (i), (i1) or (iii) as described
in Theorem 3.8.

(5) G/Z(GY is a finite simple group and W is a torsion group.

(6) G/Z(G) is a finite simple group and Z(W') is a torsion group.

Proof. By Lemma 3.7, (2) implies (3). Theorem 3.8 yields that (3) implies (4). Note
that if N is a compact local ring with identity for which 2 is a unit, then W(N) = {£1}
by [4, Theorem 2.9] (and in particular, /(W (N)) = 1). Consequently (4) implies (5).
By Lemma 3.7, (6) implies (3) and hence (3)-(6) are equivalent. Lemma 3.6 and the
above observation yield that if 4 is isomorphic to a ring of type (i), (ii) or (iii) as
described in Theorem 3.8, then /(W) < 4. Thus (1)—(6) are equivalent. [l

4. Nilpotency and commutativity of W

Lemma 4.1. Let A be a compact ring with identity for which W is a nilpotent group.
Then there exists a positive integer m such that for all o\, 61 € 4, (6162)* = 1.

Proof. Let {1} =2,C2,C---CZ,_1CZ, =W be the ascending central series for
W.So foralli, 0 <i < m—l Zn—i/Zm~(i+1y 18 the center of W/Z,,_(;11). Let oy, 0'2 e A.

Since Z,,/Z,_ is abelian, (Jlaz) € Z,_1. By Lemma 3.4, there exist ‘7(1 and O’ 2 in

A such that (g,0,) = 0(12’02 Since Zy_1/Zm—> is the center of W/Z,,, 5 and since
2 2 2 2 2) 2) 2
( )0'(2) € Zm 1s (O'( o} ))Ul )Zm 2 — ‘7(] ‘7( 2 ( )Zm 2 that lS (G(l ) ))2 € Zm 2.

So (0102) € Z,_s. An inductive proof then establlshes that (¢,0,)%" € Zo ={1}. O

Theorem 4.2. Let A be a compact ring with identity for which 2 is a unit in A. The
Jfollowing are equivalent:

(1) W is a nilpotent group.

(2) 4 is isomorphic and homeomorphic to a product, 1], Ny, where A is a
nonempty set and for cach « in A, N, is a compact local ring with identity such that
the characteristic of N,/J, is an odd prime p, where J, is the Jacobson radical of N,.

(3) W is abelian.

(4) W = A.
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Proof. (3) and (4) are equivalent by [6, Corollary 2.9]. Assume that W is nilpo-
tent. Let ¢, 0o € A be such that gy, € 1 +J. Then g0, = | + a for some
a in J. By Lemma 4.1, there exists a positive integer m such that ((f](fg)zm = 1.
Then 1 = (g102)> = (1 +a)* and so 0 = 2"a + (2'2‘I Yot 4+ -+ a¥ = a2" +
(2'2" ya + --- 4+ a* ). Since 2" is a unit in 4 and since a € J,2" + (2!2‘I )a +
-4+ a* =" is a unit in 4. Hence a = 0, that is, (1 +J) N 4> = {1}. Therefore by
Lemma 3.5, 4 is isomorphic and homeomorphic to a product, [],. 4 N,, where for each
% in A, N, is the ring of m, xm, matrices over a finite field F, having odd characteristic
or N, is a compact local ring with identity for which the characteristic of N,//, is an
odd prime p,. Suppose that there exists an « in A such that N, is the ring of m, X m,
matrices over a finite field 7, where m, > 1. Denote W(N,) by W,. Since W, is a
homomorphic image of W, W, is a nilpotent group [18, Theorem 5.25, p. 90] and con-
sequently W, is solvable. By [9], W, = {x € N,: det x = £1} and so SL{m,, F,) C W,
(where SL(m,,F,) = {x € N, detx = 1}). Therefore, SL(m,,F,) is solvable [18,
Theorem 5.12, p. 81]. So if Z is the center of SL(m,, F,), then SL(M,, F,)/Z is solv-
able as well [18, Theorem 5.13, p. 81]. By [19, Corollary, p. 80], m, = 2 and F, has
cardinality 3. Therefore we may assume that W, is the group, GL(2,7/(3)), of 2 x 2
nonsingular matrices over Z/(3) by [9]. A routine calculation shows that if Z; is the
center of GL(2,Z/(3)), then GL(2,7Z/(3))/Z, has a trivial center. Therefore if m, > 1,
then W, is not nilpotent. Hence (1) implies (2).

Clearly (3) implies (1) and so it suffices to prove that (2) implies (3). Assume that
(2) holds. For each = in A, let W, denote W{(N,). By Theorem 2.9 of [4], for each x
in A, W, has precisely two elements. Therefore W is abelian. [

Corollary 4.3. Let 4 be a compact ring with identity such that 2 is a unit in A. The
Jollowing are equivalent:

(1) W is abelian and G/W is abelian.

(2) A is a commutative ring.

(3) G is abelian.

Proof. It suffices to prove that (1) implies (2). If W is abelian, then 4 = [, N,
where for each » in A, N, is a compact local ring with identity such that the charac-
teristic of N,/J, is an odd prime where J, is the Jacobson radical of N,. For each «
in A, let 1, denote the multiplicative identity of N, and let G, and W, denote G(V,)
and W(N,), respectively. Note that by [4, Theorem 2.9], for each x in A, W, = {£1,}
(and hence W = [[,. {£1,}). By [3, Theorem 3.10], it suffices to prove that if, in
addition, G/W is abelian, then G is abelian, that is, if G/W is abelian, then G, is
abelian for all o in A.

Let x € A. As N,/J, is a compact local ring with identity, N,/J, is a finite field by
[15, Theorem 16]. Thus since g € G, if and only if g+.J, is a unit in N,/J,, there exist
an element g, in G, and a positive integer m such that G, = |J_,(g? + J,). Observe
that xy = yx for all x and y in J,. Indeed, if xy # yx for some x and y in J,, then
(ly +x)1y+ y) = —(1,+ ¥)(1, + x) since G,/W, is abelian and since W, = {+1,}.
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So 2-1y = —[yx+xy+2(x+ »v)] € J,NG,, a contradiction. Similarly, g,x = xg,
for all x in J,. Therefore as G, = |J_,(g% + J»), Gy is abelian and consequently (1)
implies (2). O
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