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Abstract 

For a compact Hausdorff ring, one observes that the group of units is a totally disconnected 
compact topological group and is a finite simple group if and only if it possesses no nontrivial 
closed normal subgroups. Three classification theorems for compact rings are now given. First, 
those compact rings with identity having a finite simple group of units are identified. Second, a 
classification of all compact rings A with identity for which 2 is a unit in A, G modulo the center 
of G is a finite simple group and the length of W is less than or equal to 4 (or equivalently, 
W is a torsion group) is given where G is the group of units in A and W is the subgroup of 
G generated by {SE G: g2 = I}. Finally, those compact rings with identity having 2 as a unit 
and for which W is a nilpotent group are identified. @ 1997 Elsevier Science B.V. 

1991 Muth. Subj. Class.: Primary 16A80, 13599; Secondary 16A48, l6A25 

1. Introduction 

If A is a compact Hausdorff topological ring with identity and if G is the group 

of units in A, then G is a compact topological group by [l, Exercise 12h, p. 119; 7, 

Theorem]. Since A is a totally disconnected space, G is O-dimensional [ 15, Theorem 8; 

10, Theorem 3.5, p. 121. Consequently, if rc is an irreducible representation of G in a 

Hilbert space, then n(G) is a finite group [l 1, Corollary 28.19, p. 691. In particular, G 

contains no nontrivial closed normal subgroups if and only if G is a finite simple group. 

In Section 2, we show that G is a finite simple group if and only if A is isomorphic 

and homeomorphic to the ring n,,, Z/(2), endowed with the product topology, where 

il is a nonempty set and Z/(2) is the ring of integers modulo 2 or A is isomorphic 

and homeomorphic to (n,,, L/(2)) x Ao, endowed with the product topology, where 

.4 is an arbitrary set and A0 is one of the following rings: 
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(1) a finite field of cardinality 3 or cardinality 2” where n is a positive integer such 

that 2” - 1 is prime, 

(2) the set of n x ~1 matrices over Q(2) for some n > 3, 

(3) z/(4), the ring of integers modulo 4, 

(4) ~/(:)[x],(~z) where Z/,,)[X] is the ring of polynomials in x with coefficients in 

z/(2) and (x2) is the ideal of Z/(~)[.X] generated by x2, or 

(5) the set of all 2 x 2 upper triangular matrices over z/(2). 

If G is a group, let Z(G) denote the center of G and let W be the subgroup of 

G generated by the set of involutions LI = {g E G: g2 = 1 }. If g E W, the length 

l(g) of y is the smallest positive integer m such that there exist ~1, ~2, . . . , w, in d 

with g = w~w~~~~w,,,. For each subgroup H of W, define the length Z(H) of H by 

l(H) = supycH l(g). There are compact rings with identity for which Z(W) is infinite, 

and I(W) is finite if and only if W is compact. (See [5].) In [9], Gustafson et al. 

proved that if G is the group of nonsingular matrices over a field, then I(W) < 4. 

Consequently, if A is a semisimple compact ring with identity, then I(W) 5 4 as A is 

isomorphic to the product nztn A4,, where each M, is a matrix ring over a finite field 

[15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 1711. In Section 3 we show 

that for a compact ring A, G/Z(G) IS a finite simple group if and only if it possesses no 

nontrivial closed normal subgroups and then give a characterization of those compact 

rings A with identity for which 2 is a unit in A, G/Z(G) is a finite simple group and 

I(W) < 4. In particular, we show that A has the above properties if and only if G/Z(G) 

is a finite simple group and W is a torsion group. Finally, in Section 4, we prove that 

if 2 is a unit in a compact ring A with identity, then the following are equivalent: 

1. W is a nilpotent group. 

2. W is abelian. 

3. A is isomorphic and homeomorphic to the product nIxEn N,, where for each M in 

/1, N, is a compact local ring with identity such that the characteristic of N,/J, is an 

odd prime pm where J, is the Jacobson radical of N,. 

As a corollary, we obtain that if A is a compact ring with identity for which 2 is a 

unit, then G is abelian if and only if W and G/W are abelian. 

Henceforth if A is a ring with identity, G, J, A and W will denote the group of 

units in A, the Jacobson radical of A, the subset {SE G: g2 = l} of involutions of G 

and the subgroup of G generated by A, respectively. In order to avoid confusion, we 

will sometimes denote G, J, A and W by G(A), J(A), A(A) and W(A), respectively. 

2. Compact rings having a simple group of units 

Henceforth, all compact topologies are assumed to be Hausdorff. 

Lemma 2.1. Let G be a totally disconnected compact group. Then G possesses no 

nontrivial closed normal subgroups iJ’and only if G is a finite simple group. 
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Proof. Suppose that G contains no nontrivial closed normal subgroups. Since G is 

a compact group, G has a unitary irreducible representation in the group GL(V) of 

automorphisms of a finite dimensional complex vector space V by [ 16, Theorem 2, 

p. 271. By hypothesis, this representation is faithful and hence G is isomorphic to a 

closed subgroup of GL( V). Therefore G is a Lie group [2, Corollary, p. 1351. Con- 

sequently, as each component of a Lie group is open [2, Proposition 1, p. 401, G is 

endowed with the discrete topology. Thus G is a finite group. 

The converse is clear. 0 

Theorem 2.2. Let G he the group of units of a compact ring A with identity. (1) G 

is a totally disconnected compact topological group. (2) G is a $nite simple group if 

and only if‘ G possesses no nontrivial closed normal subgroups. 

Proof. By [l, Exercise 12h, p. 119; 7, Theorem], G is a compact topological group. 

As A is totally disconnected [15, Theorem 81, G is totally disconnected as well. (2) 

follows from Lemma 2.1. 0 

Recall that an idempotent e in a ring A is primitive if e is not the sum of two 

nontrivial orthogonal idempotents in A. 

Lemma 2.3. Let A be a compact ring with identity and suppose e + J is a primitive 

idempotent in A/J. If f is any idempotent in A such that f + J = e + J, then f is 

primitive. 

Proof. If ,f‘ were not primitive, then there would exist nontrivial orthogonal idem- 

potents J‘t and J‘2 in A such that f = fl + f2. Consequently as f’ + J is a primitive 

idempotent in A/J, either fl + J = J or f2 + J = J, that is, either f, E J or f2 E J. 

But J contains no nontrivial idempotent since a” + 0 for all a in J [ 15, Theorem 151. 

Hence ,f’ is a primitive idempotent in A. 0 

Lemma 2.4. Let A be a compact ring with identity such that A/J = n,,,,, Z/(2) 

for some nonempty set A. For each fl in A, let Eb = (x,),~A where x~ = 7, the 

multiplicative identity of Z/(2) and f or a # p, x, = 0, the additive identity of L/(2). 

Then there exists a family (e,: XE A> of primitive orthogonal idempotents in A such 

that e, + J = E, for all CY in A, &,, e, = 1 and e,Ae,Je,Je, ” Z/(2 j for all z in A. 

Proof. Well-order A. If A has no largest element, let A’ = A. Otherwise, adjoin co 

to A and extend the ordering from A to A U {cc} by declaring that 00 is the largest 

element in A U {co}. In this case, let A’ = A U {cG}. Let &, be the smallest element 

of A. For each i. E A’\{&}, define F;~ by F). = CpCj,Ei.. So Fi. = (Y,),~A where 

yz = i for all CY < 3. and yI = 0 for all E > 1.. Clearly, if i,l, 2~ E A’\{&} where 

il < j*I, then F;., Fj,? = F;,,F;., = F;,, . Moreover, if i, is a limit ordinal of A’\{&}, then 

F;_ = limp,; Fr. Hence by [15, Lemma 121, there exists a family {hi: 3. E A’\{&}} 
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of idempotents in A such that h;., h;: = hr,hj,, = hn, for all io < ;Cr 5 I.2 and 

h;. +J = Fi. for all i, E n’\{&}. Let hi,, be the additive identity of A. For each 1 E A, 

let ~(3,) denote the smallest element of {p E JI’: i, < p} and let ej, = h;,(l) - hi. Then 

{ej,: i E /1} is a family of orthogonal idempotents in A such that for each c( in A, 

e, + J = E, and e,Ae,/e,Jee, 2 Z/(2). As each E, is a primitive idempotent in A/J, 

Lemma 2.3 yields that each e, is a primitive idempotent in A. So it suffices to prove 

that CXEn e, = 1. 

First notice that Catn e, exists. Indeed, as A is compact, there exists a fundamental 

system of ideal neighborhoods of zero in A [IO, Theorem 3.5, p. 12, Theorem 7.7, 

p. 62; 15, Theorem 8 and Lemma 93. Since A is complete, it suffices to show that 

if U is an open ideal of A and if M = (3 E A: e, 6 U}, then A4 is finite. Let 

U be an open ideal of A. Then A,JU is a compact discrete ring and hence a fi- 

nite ring. In particular, A/U has finitely many idempotents. Moreover, if x and /I 

are distinct elements of M, then e, + U # elj + U. Indeed, if e, + U = elj + U, 

then e, + U = ef + U = exe/j + U = 0 + U = U, a contradiction. Hence A4 is 

finite and so CIEn e, exists. (The above proof is an adaptation of one given by 

Seth Warner in an unpublished manuscript.) Since {e,: r E A} is a family of ortho- 

gonal idempotents in A, EXE,,, e, is an idempotent as well. Thus 1 - xrEn e, is an 

idempotent in A. By construction, I - Cat,, e, E J and therefore, as in the proof of 

Lemma 2.3, 1 - xzEn e, = 0. 0 

Lemma 2.5. Let A be a ring with identity und let f denote a nonempty set of idem- 

potents in A such that for all f in I, j’ f J is a central idempotent in A/J. If r is 

contained in the centralizer of J in A, then I is contained in the center of A. 

Proof. Let e E r and let x E A. Since (e + J)(x + J) = (x + J)(e + J), ex - xe E J. 

Denote ex-xe by a. Then ae = ea and so ea = e2a = e(ea) = e(ae) = e(ex-xe)e = 0. 

Thus 0 = ea = e(ex - xe) = ex - exe and hence ex = exe. Since ae = ea = 0, 0 = 

ae = (ex - xe)e and consequently, exe = xe as well. Therefore e is in the center of A. 

Lemma 2.6. Let A be a nonempty set and for each CI E A, let F, be a jinite field 

endowed with the discrete topology: Let A = nXEn F,, endowed with the product 

topology. If I is a nonzero closed left (right) ideal of naEn F,, then there exists a 

nonempty subset AI of A such that I = n,,,, B, where B, = F, for all r in A, and 

B, = (0,) jar all CI E A\A, (where 0, is the additive identity of F,). 

Proof. For each u in /i, let 1, denote the multiplicative identity of F,. Define At by, 

Al = {CX E A: there exists (.~g),j~,,t in I with x, # O,}. For each CI in A,, let B, = F, 

and for each r in n\.4t, let B, = {O,}. Clearly I C nzEn B,. 

We first prove that given any c( in A,, the element s, of A defined by, s, = (ub)oE,t 

where v, = 1, and c’p = O,j for fl # x, is an element of I. Indeed, let (xg)b,=n E I be 

such that x, # O,X and let yr E F, be such that xlyX = ylx, = 1,. Define (zg)~~,t E A 

by, Z, = yr and zp = 0~ for B # X. Then s, = (z~~),K~(x~)BE,I E 1. 
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Now let (dr)r~,~ E n,,,,, B,. As I is closed, it suffices to prove that (dl)bE,,t E 7. 

So let U be a neighborhood of (d,jlc~ in A. Without loss of generality, we may assume 

that there exists a finite subset 112 of A such that U = nlEn U, where U, = {d,} 

for all x in /iz and r/, = F, for all Y E /i\Az. Let A; C /12 be such that for all z 

in Ai, d, # 0, and for all a in A,\AL, d, = 0,. For each a in II:, let t, = (c,$),~~,,t 

where c, = d, and CL{ = 0s for all p # 2. Recall that for each cx in A;, s, E 1. Thus 

Recall that a ring A with identity is called a local ring if the set of nonunits in A is 

an ideal of A. 

Lemma 2.7. Let A he a compact ring with identity having characteristic two such that 

J = {O,a} ,for some nonzero a in A and A/J % n,,, Z/(2) for some nonempty set A. 

Then ,far some indexing set T, A is isomorphic and homeomorphic to ( [{Et- 2/(2)) x n 

A0 lzhere A0 is one of the following rings: 

(1 1 q2q 
(x2 ) 

where Z’/(~,[X] is the ring of polynomials in x with coeficients in 

Z/(2) and (x2) is the ideal of Z/(~)[X] generated by x2; or 

(2) the set afall 2 x 2 upper triangular matrices over Z/(2). 

Proof. First notice that as 9 is a unit in A if and only if g + J is a unit in A/J, G = 

1 + J. By Lemma 2.4, there exists a primitive idempotent e in A such that ea # 0 and 

eAe/eJe P Z/(2). In particular, as ea E J, ea = a. Recall that the Pierce decomposition 

of A relative to e yields that A = eAe @ (1 - e)A( 1 - e) @ eA( 1 - e) @ (1 - e)Ae. (See 

for example [14, p. 481.) 

Suppose that eae = 0. We first show that A = eAe@( 1 -e)A( 1 -e)@eA( 1 -e) where 

J = eA( 1 - e). Indeed, as eae = 0, ae = 0 and thus (1 - e)a( 1 - e) = (1 - e)a = 0. So 

a = eae+( 1 -e)a( 1 -e)+ea( 1 -e)+( 1 -e)ae = ea( 1 -e) and consequently J & eA( 1 -e). 

Notice that if x E eA( 1 -e), then x2 = 0 and hence (1 +x)( 1 -x) = (1 -x)( 1 +x) = 1. 

Thus if x E eA( 1 - e), then 1 + x E G = 1 + J. Therefore, eA( 1 - e) C J. Similarly 

as (( 1 - e)Ae)’ = {0}, (1 - e)Ae C J = eA(l - e) and hence (I - e)Ae = (0). So 

A = eAe ~3 (1 - e)A( 1 - e) @ eA( 1 - e) where eA( 1 - e) = J. 

Observe next that as eae = 0, eJe = (0) and hence eAe is a finite field having 

two elements. Moreover as (1 - e)a(l - e) = 0 and as (1 - e>J( 1 - e) is the Ja- 

cobson radical of (1 - e)A(l - e) [14, Proposition 1, p. 481, (1 - e)A(l - e) is a 

compact semisimple ring with identity 1 -e # 0. Furthermore, 1 -e is the only unit in 

( 1 -e)A( 1 -e). Indeed, if x and y are elements in (1 -e)A( 1 -e) such that x # 1 -e but 

x~’ = yx = (1 -e), then as xe = ex = ye = ey = 0, (x+e)(y+e) = (y+e)(x+e) = 1. 

Therefore x + e E G = 1 + J = { 1, 1 + a}. Since x # 1 - e, x + e = 1 + a. Con- 

sequently, ex + e2 = e + ea = e + a and so 0 = ex = a, a contradiction. Thus 

(1 - e)A( 1 - e) is isomorphic and homeomorphic to n,,,, Z/(2) for some nonempty 

set rt by [15, Theorem 161. For simplicity of notation, assume that (1 - e)A( 1 - e) = 



Let a” denote the right annihilator of a in 4 and let y : (1 -e)A( 1 -e) --f J be given 

by g(x) = ax for all x in (1 - e)A( 1 - e). Observe that y is a surjective additive group 

homomorphism with kernel a’ n (1 - e)A( 1 - e). So a” n (1 - e)A( 1 - e) is a closed 

subset of (1 - e)A( 1 --e) and hence by Lemma 2.6, there exists a subset r2 of rl such 

that a’ n (1 - e)A( 1 - e) = flTtr, B, where B, = Z/(2) for all CI in I-2 and B, = (0) 

otherwise (where 0 is the additive identity of Z/(2)). In particular, a”n( 1 -e)A( 1 -e) is 

a two-sided ideal of(l-r)A(l-e). Moreover, as (I-e)A(l-e)/a’n(l-e)A(I-e)% 

J, the cardinality, JTt\Tz/, of r,\r z is 1. Let CA() E I’, \r, and let I = nzET, C, 

where C, = Z/(2) and for all x E T,\(Q), C, = (0). Then (1 - e)~I(l - e) = 

I@a’fl(l -e)A(l -e) and so A =eAecB[16cr’n(l -e)A(l -e)]@eA(l -e). 

A routine proof shows that eAe cf I Eli eA( 1 - e) and ur n (1 - e)A( 1 - e) are ideals 

of A, the first of which has 8 elements and the second of which is isomorphic and 

homeomorphic to fllEr2 Z/(2) or to {o} if l-1 = 8. 

By construction, I g Z/(2). So if i is the multiplicative identity of I, then efi is the 

multiplicative identity of the ring eAe CE I ;3 eA( I ~ e). Notice that eAe @I e eA( 1 - e) 

is noncommutative as ea # ae. Thus eAe CD I ‘si eA( 1 - e) is isomorphic to the ring 

of 2 x 2 upper triangular matrices over Z/(2) by [ 17, Theorem 141. Consequently, if 

eae = 0, then A is isomorphic and homeomorphic to Aa or to 
( 

nXtrz Q(2)) x Ao 

where A0 is the ring of 2 x 2 upper triangular matrices over Z’/(2). 

Finally, suppose that cue # 0, that is, suppose that eae = u. We first show that e is 

in the center of A. Indeed, let x E A. As A/J is commutative, ex - xe E J. Therefore 

ex --xe = 0 or ex -xe = a. If ex --.xtJ = a, then e’x - exe = eu = a = ex --xe and hence 

exe = xe. Similarly, exe = ex and so in either case t=y = xe. Thus e is in the center of 

A. In particular, eA( 1 - e) = (1 - e)Ae = {0} and so A = eAe @ (1 - e)A( 1 - e). 

Recall that eAe/eJe 2 Z/(2), a finite field havin, 0 two elements. So eAe is a local 

ring with identity having four elements and having characteristic 2. Consequently, by 

[3, Theorem 2.51, eAe ” B/c~)[x]j(x~ ). 

Since eu = a, (1 - e)a( 1 - e) = 0. Therefore, as before, if 1 - e # 0, then 

(1 - e)A( 1 - e) is isomorphic and homeomorphic to nXtr Z/(2) for some nonempty 

set f. Otherwise, (1 - e)A( I - e) = {O}. Thus A is isomorphic and homeomorphic to 

( IIIEr 7/P!) x ~/(2i[Xl~~_K2) or to Z:(~JXI,(~~). [3 

Theorem 2.8. Let A he u compuct ring wYth identity und let G he the group of units 

in A. G is simple ifund only $A is isomorphic and lwmeomorphic to flyEn Z/(2) for 

.som~ nonempty set A or A is isomorphic and homcomorphic to ( n,cn W)) x Ao 

where A is an urhitrury set und A0 is one of’ the Jbllowing rings: 

( 1) u jinite ,field of’ curdinulity 3 or 2” ,fiw some positive integer n such thut 2” - 1 

is u prime, 

(2) the set clf’n x n mutrices owr H/(2) where II is u positice integer greutrr thun 

or equul to 3, 

(3) V(4)> 
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(4) U(2)1~1~(~2)~ (jr 

(5) t/w ring OJ’ 2 x 2 upper trianguhr matrices wer Z!/(2). 

Proof. As GL(n,Z/(2)) is simple for all n > 3 [19, Theorem 9.9, p. 781, if A is one 

of the rings described above, then G is a finite simple group. Conversely, assume that 

G is a simple group. By Theorem 2.2, G is finite. 

First assume that A is semisimple. By [ 15, Theorem 161, A is isomorphic and homeo- 

morphic to nXtn M, where each M, is the set of n, x n, matrices over a finite field 

F,. For each r in A, let G, denote the group of units in A4,. As G is a simple group, 

the set .4, defined by A, = {z E ii : ]G, 1 > 1 } has at most one element. Moreover, 

if x E A,, then G, is a finite simple group. Thus for all /? in /l\nt, A4/j ” Z/(2) and 

if II, = {x} # 8, then IVY is a finite field such that the cardinality of G, is a prime 

or M, is isomorphic to the ring of n x n matrices over Z/(3) for some n > 3 [19, 

Theorem 9.9, p. 781. 

Suppose then that J # (0). Since 1 +J is a closed normal subgroup of G, G = 1 +J. 

Consequently, A/J is isomorphic and homeomorphic to n,,, Z/(2) for some nonempty 

set /i by [15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 1711. 

Since J is finite, J2 # J by Nakayama’s Lemma [13, Theorem, p. 4121. Thus as 

1 + J2 is a closed normal subgroup of 1 + J, J2 = (0). In particular, as G = 1 + J, 

G is abelian and so the cardinality of G is a prime p. Note that 2 E J since A/J ” 

n,,,A Z/(2). Therefore as J 2 = (0) the characteristic of A is either 2 or 4. Let a E , 

J\(O). If the characteristic of A is 2, then (1 +u)~ = 1 and hence the order of 1 +cc is 2. 

Thus p = 2. On the other hand, if the characteristic of A is 4, then 2 E J\(O) and 

( 1 + 2)2 = 1. Therefore in either case, p = 2, that is 1 + J = G = { 1, 1 + u} for some 

nonzero a in J. By Lemma 2.7, it suffices to show that if A has characteristic 4, then A 

is isomorphic and homeomorphic to ( rI/rtr Z!(2)) x Z/(4) for some indexing set r. 

Assume then that the characteristic of A is 4. We first prove that A is a commutative 

ring. As 2 E J\(O), J = {0,2} and hence by Lemma 2.5, if e is any idempotent in 

A, then e is contained in the center of A. Consequently, A is commutative. Indeed, let 

x E A. Then x+J is an idempotent in A/J and hence there exists an idempotent e in A 

such that x+J = e+J [15, Lemma 121. Thus x E {e, ef2) and so x is in the center 

of A. Therefore by [15, Theorem 171, A is isomorphic and homeomorphic to nztn, N, 

where for each x in ill, N, is a commutative, local, compact ring with identity. For 

each Y in /it, let G, denote the group of units in N, and let J, denote the Jacobson 

radical of N,. As A/J Z nxEn L/(2), for each x in At, N,/J, 2 L/(2). Let A2 be the 

subset of /It defined by, /11 = {X E /It: ]G,/ > l}. Then for all x E 11t\,12, ICY] = 1 

and hence N, ” Z!/(2). As before, since G is simple, A2 has at most one element. 

But as A has characteristic 4, ii2 # 8. Let .42 = (x0). Then A is isomorphic and 

homeomorphic to 
( 

nztn,,,,, 7/(2)) x NzO It suffices to show that Nz, E Z/(4). 

Observe that N,(, has characteristic 4 as A has characteristic 4. Moreover, as /G] = 2, 

lGzc, 1 = 2 as well. Therefore IN,,, 1 = 4 since Nxo/Jxn E L/(2). So Nzii is a 4-element 

ring with identity having characteristic 4, that is, N, % Z/(4). q 0 



Corollary 2.9. Let A he u cwqxrc~t ring u,itll identity und let G he the group oj’units 

in A. Tht> ,fi,llo~zkq statemrnts uw quiculent: 

(a) G posscssrs no nontriuiul dosrrt normd sul~groups. 

(b) G is u ,finitr simpk c~roup. 

(c) G is isomorphic to one qf’ tlw ,fdlo,~*ing jinite simple groups: 

( I) tlw trioiul group, 

(2) U(2)> 
(3) U’/(2n - 1 ) utherr 2” - 1 is a prime 01 

(4) GL(n, P?/(2)) ~~herc II 2 3. 

Proof. The corollary follows from Theorems 2.2 and 2.8. 0 

3. Simplicity of G/Z(G) 

Throughout this section, unless otherwise stated, A is a compact ring with identity. 

For each subgroup U of G, we will denote the center of U by Z(U). 

Lemma 3.1. Z(G) is a closed normu subgroup OJ’G and G/Z(G) is u compact totully 

disconnectd group. 

Proof. The fact that Z(G) is a closed subset of G follows from the continuity of the 

map (x, 4’) --) x_b’x -‘I?~‘. Since G is totally disconnected by Theorem 2.2, G/Z(G) is 

also totally disconnected [IO, Theorem 7.11, p. 631. 0 

Lemma 3.2. G/Z(G) is u finite .simple group [f untl only ij G/Z(G) has no nontricid 

closed normal subgroups. 

Proof. The result follows from Lemmas 2.1 and 3.1. 0 

Lemma 3.3. Ij’G/Z(G) is u,finite simple group, then either W = Z(W) or W/Z(W) 2 

G/Z( G ). 

Proof. Assume that W # Z(W). Since WZ(G) is a normal subgroup of G containing 

Z(G), WZ( G) = Z(G) or WZ( G) = G. If WZ( G) = Z(G), then W 2 Z(G) and hence 

W = Z(W), a contradiction. So WZ( G) = G. Therefore G/Z(G) = WZ(G)/Z(G) s 

W/WnZ(G). In particular, W/WnZ(G) is a simple group. Clearly, WflZ(G)cZ(W). 

Therefore since W/W n Z(G) is simple and since W # Z(W) by assumption, Z(W) = 

W nZ(G). So G/Z(G) ” W/Z(W). I7 

As in Section I, for each M’ E W. define the kerzqtlz l(w) of w to be the smallest 

positive integer m such that there exist wI, “‘2, . , IL’,,, in d with w = ~1~2 . w,. For 

each subset S of W, let l(S) = sup{/(s): s E S}. 



Lemma 3.4. Let w E W he such thot l(w) 5 2. Then ,fbr euch positive integer n, 

/(wn) 5 2. 

Proof. The result clearly holds if f(w) = 1, that is, if w2 = I. So assume that 

1(nl) = 2. Let dl, dz E d be such that w = dld2 and let n be a positive integer. 

If n = 2k + I for some positive integer k, then M!” = [(dld2)kdll[d2(dld2)Xl where 
[(d,dz)“d,]’ = [dz(d,dl)‘]’ = I and so l(w”) 5 2. If n is an even integer, then 
,,‘” - - [(dld2)“-2dl][d2dldZ] where [(dldz)“-‘dl]* = (dIdld2)’ = 1 and so once 

again, I(tt”‘) 5 2. 3 

The following was proved in [6]. 

Lemma 3.5. Suppose thut 2 is u unit in A. The ,follob~~ing ure equicalent: 

(1) (9 E (1 +J)n W: [(Cl) 5 2) = (1). 
(2) (I +J)n w = (1). 
(3 ) A is isomorphic und homeonlorphic to nrE,, N, ~vlzrrr jbr each x in A, N, is 

u mutris riny owr (I ,jirzitr jifield of odd chuructrristic or N, is a compuct Io~ul ring 

lvith identitll such thut the churacteristic oj’ N,/J, is an odd prime where J, is thr 

Jucohson radical of’ N,. 

Proof. See [6, Theorem 2.61. n 

Lemma 3.6. Let F he u ,finite field hacing odd characteristic, let n he u positive 

integer and let A = M(n,F), the ring qf n x n mutrices ocrr F. 

(1) W={xEA:detx=*l} andl(W)L4. 

(2) Z(W) = Z(G) n W. 

(3) W/Z( W) is simple [f und only ij there is a k in F u’ith k” = - 1. 

Proof. (1) holds by [9]. Clearly (2) and (3) hold when n = 1. So assume that n 1 2. 

Notice that since F has odd characteristic, if w E G, then w diag( I, 1,. , 1, - 1) = 

diag(l, I,..., I,-1)w if and only if 

for some nonsingular matrix B in M(n- I, F) and for some an,, in F\(O). In particular, 

if $2‘ E Z( W ), then w has the above form. So for all w in Z(W) and for all k 

in F\(O), wdiag(l,l,..., l,k) = diag(l,l,..., 1,k)w. As G = W{diag(l,l,..., 1,k): 

k E F\(O)} [IS, Lemma 8.13, p. 1631, Z(W)CZ(G) and hence (2) holds. 

Denote {x E A: det x = 1) by SL(n,F). By (1) and (2), Z(W) = {al: CP = &I} 

where I is the n x n identity matrix in A. Hence as Z(SL(n,F)) = {xl: cx” = I} [IS, 

Theorem 8.15, p. 1641, Z(SL(n,F)) = SL(n,F) n Z(W). 



Suppose there is a k in F with k” = - 1. Since kl E Z(W) and det(k1) = 

-1, SL(n,F)Z(W) = W. Therefore, W,‘Z( W) = SL(n,F)Z( W)/Z( W) ” SL(n, F)/ 

(SL(n, F) n Z(W)) = SL(n, F)jZ( SL(n,F)) = PSL(n, F), the projective unimodular 

group. Therefore if n > 3, then KiZ( W) is simple by the Jordan-Dickson Theorem 

[ 18, Theorem 8.27, p. 1741. Since there exists a k in F with k” = - 1, if II = 2, then 

the cardinality of F must be greater than 3. Consequently, W/Z(W) is simple by the 

Jordan-Moore Theorem [ 18, Theorem 8.19, p. 1671. 

Conversely, assume that W/Z(W) is simple. If for all k in F, k” # - 1, then Z(W) = 

{xl: 2” = I} and hence SL(n,F)/Z( IV) is a proper normal subgroup of W/Z(W), a 

contradiction. Therefore (3) holds. Cl 

Lemma 3.7. Suppo.w that 2 is u wit in A and thut G/Z(G) is a jinite simple yroup. 

!f’ /(Z(W)) 5 4 or if Z( W) is a torsion ~~YHAJ~, then (1 + J) n W C Z(G). 

Proof. Assume that ,(Z( W)) 5 4. By Lemma 3.2, since G/Z(G) is a simple group, 

G/Z(G) is finite. Therefore by the Feit-Thompson Theorem [8, Theorem, p. 7751, the 

order, ]G/Z(G)l, of G/Z(G) is 1, a prime p or 2”q where IZ is a positive integer and 

q is an odd integer. The result clearly holds if IG/Z(G)I = 1 and so we may assume 

that IG/Z(G)J is a prime p or lG/Z(G)/ is even. 

Suppose first that IG/Z(G)I = 2. We will prove that (1 +J)n W = {l}. By Lemma 3.5 

it suffices to show that if w E ( 1 + J) n W and I(nl) < 2, then w = 1. Let dr , dz E A 

where dtdz E 1 +J. If drdz # 1, let a E J\{O} be such that dId2 = 1 + a. Then 

(drd~)~ # 1. Indeed, if (dru’z)’ = I, then 1 + 2u + a2 = (1 + Q)~ = 1 and so 

a(2 + a) = 0. But 2 + u is a unit in A and consequently a = 0, a contradiction. So 

(d1d2)~ # 1. Therefore, (dld2)2 E (1 + J)\{ 1 } and so there exists a nonzero b in J 

with (dld2)2 = 1 + 6. By Lemma 3.4, (dld2)2 = (~102 for some crl,rr2 E d. Since 

IG/Z(G)] = 2, ~I(TZ = (dld2)l E Z(G). Therefore (1 + b)2 = (ar~r2)~ = (61(~2)crr(~2 = 

gr(rrr 02)02 = 1. Hence 6(2 + b) = 0 and so h = 0, a contradiction. Consequently, if 

/G/Z(G)] = 2, then (1 +J) n W = {I} cZ(G). 

Assume that iG/Z( G)/ IS an odd prime p. Let d E A. Then d = dP E Z(G) and 

therefore W C Z(G). 

Finally, assume that JG/Z(G)] = 2”q where n is a positive integer and q is odd. 

As (1 +J)n W is a normal subgroup of G, ((1 +J)n W)Z(G) = G or ((1 +J)n 

W)Z(G) = Z(G). In order to prove that ( 1 -t J) n W C Z(G), it suffices to prove 

that ((1 +J)fl W)Z(G) # G. Suppose that ((1 +J) n W)Z(G) = G. Since IG/Z(G)/ 

is even, there exists a y in G such that the order of gZ(G) in G/Z(G) is 2. AS 

((I + J) n JV)Z(G) = G, there exists a nonzero element a in .I such that I + u E W 

and gZ(G) = (1 + a)Z(G). Let M’ = ( 1 + a)‘. Then w E W n Z(G) C Z( W). Observe 

that )v has finite order. Indeed, since /(Z(W)) 5 4, w = dldZdjd4 where each d; is 

in d. As w E Z(G), an inductive argument establishes that for each positive integer 

k, w’ = (dld2)‘(d3d4)1. Let k = )G/Z(G)J. By Lemma 3.4, there exist ~1, g2, g3, (~4 E 

A such that (d,d2)k = olcr2 and (didd)” = ~~304. Since ~102 = (did:)” E Z(G) and 

~7304 = (d3d4jk E Z(G), (mu212 = (~304) ’ = 1 Therefore na2k = 1. Let kl be the 



J.-A. C‘ohm. K. Koh I Jounlal of’ Pure unri Applied Alqehva II9 (1997) 13-26 23 

order of 11’. Write kr = 2’ka where i is a nonnegative integer and /co is odd. Recall that 

w = (I +cI)~. Notice that as the order of (1 +a)Z(G) in G/Z(G) is 2, (1 +a)“” # 1. So 

( 1 + n)“” = 1 + b for some nonzero b in J. Hence (1 + b)2” ’ = (1 + ~~~~~~~~~ = d = 1. 
Therefore 

But 2”’ is a unit in A and (“2’ )b + .. + b*’ ‘-’ E J. Consequently h = 0, a 

contradiction. 

Observe that in the above argument, the assumption that /(Z(W)) < 4 was only 

used to prove that if IG/Z(G)I IS even and if w E W n Z(G), then w has finite 

order. Consequently a similar proof establishes that if Z(W) is a torsion group, then 

(1 +J)n WcZ(G) as well. 0 

Theorem 3.8. Let A he u compact ring lclith identity for which 2 is a unit in A. Let 

G denote the group of units in A and let W be the subgroup of’ G generuted by the 

set {g E G: y2 = I } of involutions of’ G. Suppose thut ( 1 + J) n W C Z(G). Then the 

,fijllo\~Yng are equiwlent: 

(1) G/Z(G) is u finite simple group. 

(2) A is isomorphic and homeomorphic to one of the Jollowing rings: 

(i) M(n,F) x Il,,., N, ,lhere M(n, F) is the ring of n x n mutrices over (I 

,finite field F of’odd characteristic ,ftir irhich there exists m element k in F .suti,sfj!iny 

k” = - 1 mcl ,fbr each c( in A, N, is u commutative compuct local ring nsith identity 

such thut the churucteristic of N,/Jx is an odd prime where J, is the Jacobson radical 

qf’ N,, 
(ii) N x n Itn N, where N is a compuct local ring lzith identity such that the 

churucteristic of’ NJJ(N) is an odd prime and G(N)/Z(G(N)) is u simple group and 

uhere fiw euch CY in A, N, bus the properties described in (i), or 

(iii) nXEn N, vtlhere A is u nonempty set and for euch a in A, N, has the 

properties described in (i). 

Proof. By Lemma 3.6, if A is isomorphic to a ring of type (i), then G/Z(G) is a 

simple group. Therefore 2” implies 1”. 

Conversely, assume that G/Z(G) is a simple group. Denote {YE G : I(g) 5 2) by A2. 

Then ( 1 +J)nA2 C( 1 +J)n W c Z(G). Therefore (1 +J)nA* = {l}. Indeed, if dl, d2 E 

d and did? E I f J, then (drCr~)~ = (dld2)dld2 = dl(d,d2)d2 as dld2 E Z(G). So 

(d1d2)2 = 1. Hence if dld2 = 1 +a where a E J, then (I + a)* = (dld2)2 = 1. 

So a(2 + u) = 0. Consequently, as 2 is a unit in A and as a E J, a = 0. Thus 

dld2 = 1. Therefore by Lemma 3.5, A is isomorphic and homeomorphic to &,, N, 

where for each a in A, N, is a matrix ring over a finite field having odd characteristic 

or N, is a compact local ring with identity such that the characteristic of N,/J, is an 

odd prime where J, is the Jacobson radical of N,. For each x in A, let G, denote 

the group of units in N,. Since G/Z(G) is simple, the subset A, of A defined by 



A, = {x E il: G, is nonabelian}, has at most one element. Note that for each x in 

n\ii,, N, is a commutative ring by [3, Theorem 3. lo]. Suppose that At # 8. Let 

8x E (11. Since G,/Z(G,) is a simple group, A is isomorphic and homeomorphic to a 

ring of type (i) or of type (ii) by Lemma 3.6. r I 

Corollary 3.9. Let A he u compuc~t riny \t,ith identity .for which 2 is a unit. The 

,fullo~ving ure eyuiculent: 

( 1 ) G/Z(G) is u finite simpie grctup und f(W) 5 4. 

(2) G/Z(G) is a finite simpk group und t(Z( IV)) < 4. 

(3) G/Z(G) is a finite simple g~ntp and ( 1 + J ) n W & Z(G). 

(4) A is isomorphic und lzomeonzorplzic to I! ring of‘ type (i), (ii) OY (iii) as described 

in Theorem 3.8. 

(5 ) G/Z(G) is a finite .simple group and W is u torsion group. 

(6) G/Z(G) i.r u jinite simple group and Z(W) is a torsion group. 

Proof. By Lemma 3.7, (2) implies (3). Theorem 3.8 yields that (3) implies (4). Note 

that if N is a compact local ring with identity for which 2 is a unit, then W(N) = {&l} 

by [4, Theorem 2.91 (and in particular, I( W(N)) = 1). Consequently (4) implies (5). 

By Lemma 3.7, (6) implies (3) and hence (3)-(h) are equivalent. Lemma 3.6 and the 

above observation yield that if A is isomorphic to a ring of type (i), (ii) or (iii) as 

described in Theorem 3.8, then I( W ) < 4. Thus ( I )&(6) are equivalent. 0 

4. Nilpotency and commutativity of W 

Lemma 4.1. Let A he a compact ring ,citlz identit!,,jur which W is u nilpotent group. 

Then there exists u positice inteycr rn such thut ,fbr all ~1, ~2 E A, (cr1~~2)~“’ = 1. 

Proof. Let {l} = ZQ C 2, C t.. C Z,,,_, C Z,, = W be the ascending central series for 

W. So for all i, 0 < i < m-l, Z,,I-r~Z,,i-Cr+~j is the center of W/Z,+Ci+lj. Let (~1, 02 E A. 

Since Z,,,/Z,,_r is abelian, (al ~2)~ E Z,,,_r By Lemma 3.4, there exist 01’) and af’ in 

A such that (~rta~)~ = G(,~)u;‘). Since Z,,-r/Z,,,_2 is the center of W/ZM-2 and since 

c+j2)cT:z) E z,,_,, (“\2)ar)) aj”Z,,_, = a\2’(o~‘)a~‘)Z,,-2, that is, (ai2)~/2))2 E Z,,_,. 

So (uI(T~)*’ E Z,_,. An inductive proof then establishes that (0r~~)~“’ E Zo = (1). 0 

Theorem 4.2. Let A he u compuct ring jvith identity far which 2 is a unit in A. The 

,fi&~wing are equivalent: 

(1 ) W is a nilpotent group. 

(2) A is isomorphic und fzorlleorllorpllit, to u product, n,,,, N,, where A is a 

nonempty set and for euch c1 in A, N, is u compuct lwal ring with identity such that 

the charucteristic qf N,/J, is un odd prime pr bvlhere J, is the Jucohson rudicul of N,. 

(3) W is uheliun. 

(4) W = A. 



Proof. (3) and (4) are equivalent by [6, Corollary 2.91. Assume that W is nilpo- 

tent. Let (rl, ~2 E d be such that 0r(~2 E 1 + J. Then (~102 = 1 + a for some 

u in J. By Lemma 4.1, there exists a positive integer m such that (al (rz)l”’ = 1. 

Then 1 = ((~trr2)‘“’ = ( 1 + u)~“’ and so 0 = 2”~ + (‘; )u’ + + a2”’ = ~(2”’ + 

( 2; ’ ) u + . . + J”‘- ’ ). Since 2”’ is a unit in A and since n E J, 2” + (‘2’ ) a + 

.., + o”“~’ is a unit in A. Hence u = 0, that is, (I + J) n d’ = { 1). Therefore by 

Lemma 3.5, A is isomorphic and homeomorphic to a product, &,, N,, where for each 

x in ,I, N, is the ring of m, x m, matrices over a finite field F, having odd characteristic 

or N, is a compact local ring with identity for which the characteristic of N,/J, is an 

odd prime pl. Suppose that there exists an x in /1 such that N, is the ring of m, x nz, 

matrices over a finite field F, where m, > 1. Denote W(N,) by W,. Since W, is a 

homomorphic image of W, W, is a nilpotent group [ 18, Theorem 5.25, p. 901 and con- 

sequently W, is solvable. By [9], W, = {x E N,: det x = *I} and so SL(nz,, F,) C W, 

(where SL(m,, F,) = {x t N,: detx = I}). Therefore, SL(m,, F,) is solvable [IS, 

Theorem 5.12, p. 811. So if Z is the center of SL( ml,F,), then SL(M,,F,)/Z is solv- 

able as well [ 18, Theorem 5.13, p. 811. By [ 19, Corollary, p. 801, m, = 2 and F, has 

cardinality 3. Therefore we may assume that W, is the group, GL(2,z/(3)), of 2 x 2 

nonsingular matrices over U(3) by [9]. A routine calculation shows that if Zt is the 

center of GL(2, H/(3)), then GL(2,&‘(3))/Zt has a trivial center. Therefore if m, > 1, 

then W, is not nilpotent. Hence (1) implies (2). 

Clearly (3) implies (1) and so it suffices to prove that (2) implies (3). Assume that 

(2) holds. For each r~ in A, let W, denote W(N,). By Theorem 2.9 of [4], for each x 

in A, W, has precisely two elements. Therefore W is abelian. q 

Corollary 4.3. Let A he a conpzct ring irith identity such thut 2 is u unit in A. The 

,fbllo~t~ing are equiaulent: 

( 1 ) W is uhelian und G/W is uhelian. 

(2) A is u comrwtutice ring 

(3) G is uheliun. 

Proof. It suffices to prove that (1) implies (2). If W is abelian, then A g n,, , N, 

where for each x in A, N, is a compact local ring with identity such that the charac- 

teristic of N,/J, is an odd prime where J, is the Jacobson radical of N,. For each x 

in ,4, let 1, denote the multiplicative identity of N, and let G, and W, denote G(N,) 

and W(N,), respectively. Note that by [4, Theorem 2.91, for each Y in A, W, = {f lY} 

(and hence W g n,,,, (5 lx}). By [3, Theorem 3. IO], it suffices to prove that if, in 

addition, G/W is abelian, then G is abelian, that is, if G/W is abelian, then G, is 

abelian for all a in il. 

Let x E .4. As N,/J, is a compact local ring with identity, N,/J, is a finite field by 

[ 15. Theorem 161. Thus since y E G, if and only if g-t J, is a unit in N,/J,, there exist 

an element gr in G, and a positive integer m such that G, = Ur=,,(& + J,). Observe 

that XV = J-X for all x and _r in J,. Indeed, if xy # ~‘x for some x and y in J,, then 

(l,+.u)(l,+~)= -(lz+y)(12+x) since G,/W, is abelian and since W, = {fl,}. 



SO 2 . 1, = -[yx + xy + 2(x + _~a)] E J, n G,, a contradiction. Similarly, g,x = xg, 

for all x in J,. Therefore as G, = LJ~x,(y~ + Jx), G, is abelian and consequently (1) 
implies (2). 0 
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