

Journal of Pure and Applied Algebra 119 (1997) 13-26

JOURNAL OF PURE AND APPLIED ALGEBRA

Compact rings having a finite simple group of units

Jo-Ann Cohen*, Kwangil Koh

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA

Communicated by J.D. Stasheff; received 14 November 1991; revised 28 September 1993

Abstract

For a compact Hausdorff ring, one observes that the group of units is a totally disconnected compact topological group and is a finite simple group if and only if it possesses no nontrivial closed normal subgroups. Three classification theorems for compact rings are now given. First, those compact rings with identity having a finite simple group of units are identified. Second, a classification of all compact rings A with identity for which 2 is a unit in A, G modulo the center of G is a finite simple group and the length of W is less than or equal to 4 (or equivalently, W is a torsion group) is given where G is the group of units in A and W is the subgroup of G generated by $\{g \in G: g^2 = 1\}$. Finally, those compact rings with identity having 2 as a unit and for which W is a nilpotent group are identified. © 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: Primary 16A80, 13J99; Secondary 16A48, 16A25

1. Introduction

If A is a compact Hausdorff topological ring with identity and if G is the group of units in A, then G is a compact topological group by [1, Exercise 12h, p. 119; 7, Theorem]. Since A is a totally disconnected space, G is 0-dimensional [15, Theorem 8; 10, Theorem 3.5, p. 12]. Consequently, if π is an irreducible representation of G in a Hilbert space, then $\pi(G)$ is a finite group [11, Corollary 28.19, p. 69]. In particular, G contains no nontrivial closed normal subgroups if and only if G is a finite simple group.

In Section 2, we show that G is a finite simple group if and only if A is isomorphic and homeomorphic to the ring $\prod_{x \in A} \mathbb{Z}/(2)$, endowed with the product topology, where A is a nonempty set and $\mathbb{Z}/(2)$ is the ring of integers modulo 2 or A is isomorphic and homeomorphic to $(\prod_{x \in A} \mathbb{Z}/(2)) \times A_0$, endowed with the product topology, where A is an arbitrary set and A_0 is one of the following rings:

^{*} Corresponding author. E-mail: Cohen@math. ncsu.edu.

(1) a finite field of cardinality 3 or cardinality 2^n where *n* is a positive integer such that $2^n - 1$ is prime,

(2) the set of $n \times n$ matrices over $\mathbb{Z}/(2)$ for some $n \ge 3$,

(3) $\mathbb{Z}/(4)$, the ring of integers modulo 4,

(4) $\mathbb{Z}_{(2)}[x]_{/(x^2)}$ where $\mathbb{Z}_{(2)}[x]$ is the ring of polynomials in x with coefficients in $\mathbb{Z}_{(2)}(x)$ and (x^2) is the ideal of $\mathbb{Z}_{(2)}[x]$ generated by x^2 , or

(5) the set of all 2×2 upper triangular matrices over $\mathbb{Z}/(2)$.

If G is a group, let Z(G) denote the center of G and let W be the subgroup of G generated by the set of involutions $\Delta = \{g \in G: g^2 = 1\}$. If $g \in W$, the length l(g) of g is the smallest positive integer m such that there exist w_1, w_2, \ldots, w_m in Δ with $g = w_1 w_2 \cdots w_m$. For each subgroup H of W, define the length l(H) of H by $l(H) = \sup_{a \in H} l(g)$. There are compact rings with identity for which l(W) is infinite, and l(W) is finite if and only if W is compact. (See [5].) In [9], Gustafson et al. proved that if G is the group of nonsingular matrices over a field, then $l(W) \leq 4$. Consequently, if A is a semisimple compact ring with identity, then $l(W) \leq 4$ as A is isomorphic to the product $\prod_{\alpha \in A} M_{\alpha}$, where each M_{α} is a matrix ring over a finite field [15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 171]. In Section 3 we show that for a compact ring A, G/Z(G) is a finite simple group if and only if it possesses no nontrivial closed normal subgroups and then give a characterization of those compact rings A with identity for which 2 is a unit in A, G/Z(G) is a finite simple group and l(W) < 4. In particular, we show that A has the above properties if and only if G/Z(G)is a finite simple group and W is a torsion group. Finally, in Section 4, we prove that if 2 is a unit in a compact ring A with identity, then the following are equivalent:

1. W is a nilpotent group.

2. W is abelian.

3. *A* is isomorphic and homeomorphic to the product $\prod_{\alpha \in A} N_{\alpha}$, where for each α in *A*, N_{α} is a compact local ring with identity such that the characteristic of N_{α}/J_{α} is an odd prime p_{α} where J_{α} is the Jacobson radical of N_{α} .

As a corollary, we obtain that if A is a compact ring with identity for which 2 is a unit, then G is abelian if and only if W and G/W are abelian.

Henceforth if A is a ring with identity, G, J, Δ and W will denote the group of units in A, the Jacobson radical of A, the subset $\{g \in G: g^2 = 1\}$ of involutions of G and the subgroup of G generated by Δ , respectively. In order to avoid confusion, we will sometimes denote G, J, Δ and W by G(A), J(A), $\Delta(A)$ and W(A), respectively.

2. Compact rings having a simple group of units

Henceforth, all compact topologies are assumed to be Hausdorff.

Lemma 2.1. Let G be a totally disconnected compact group. Then G possesses no nontrivial closed normal subgroups if and only if G is a finite simple group.

Proof. Suppose that G contains no nontrivial closed normal subgroups. Since G is a compact group, G has a unitary irreducible representation in the group GL(V) of automorphisms of a finite dimensional complex vector space V by [16, Theorem 2, p. 27]. By hypothesis, this representation is faithful and hence G is isomorphic to a closed subgroup of GL(V). Therefore G is a Lie group [2, Corollary, p. 135]. Consequently, as each component of a Lie group is open [2, Proposition 1, p. 40], G is endowed with the discrete topology. Thus G is a finite group.

The converse is clear. \Box

Theorem 2.2. Let G be the group of units of a compact ring A with identity. (1) G is a totally disconnected compact topological group. (2) G is a finite simple group if and only if G possesses no nontrivial closed normal subgroups.

Proof. By [1, Exercise 12h, p. 119; 7, Theorem], G is a compact topological group. As A is totally disconnected [15, Theorem 8], G is totally disconnected as well. (2) follows from Lemma 2.1. \Box

Recall that an idempotent e in a ring A is *primitive* if e is not the sum of two nontrivial orthogonal idempotents in A.

Lemma 2.3. Let A be a compact ring with identity and suppose e + J is a primitive idempotent in A/J. If f is any idempotent in A such that f + J = e + J, then f is primitive.

Proof. If f were not primitive, then there would exist nontrivial orthogonal idempotents f_1 and f_2 in A such that $f = f_1 + f_2$. Consequently as f + J is a primitive idempotent in A/J, either $f_1 + J = J$ or $f_2 + J = J$, that is, either $f_1 \in J$ or $f_2 \in J$. But J contains no nontrivial idempotent since $a^n \to 0$ for all a in J [15, Theorem 15]. Hence f is a primitive idempotent in A. \Box

Lemma 2.4. Let A be a compact ring with identity such that $A/J = \prod_{\alpha \in A} \mathbb{Z}/(2)$ for some nonempty set A. For each β in A, let $E_{\beta} = \langle x_{\alpha} \rangle_{\alpha \in A}$ where $x_{\beta} = \overline{1}$, the multiplicative identity of $\mathbb{Z}/(2)$ and for $\alpha \neq \beta$, $x_{\alpha} = \overline{0}$, the additive identity of $\mathbb{Z}/(2)$. Then there exists a family $\{e_{\alpha} : \alpha \in A\}$ of primitive orthogonal idempotents in A such that $e_{\alpha} + J = E_{\alpha}$ for all α in A, $\sum_{\alpha \in A} e_{\alpha} = 1$ and $e_{\alpha}Ae_{\alpha}/e_{\alpha}Je_{\alpha} \cong \mathbb{Z}/(2)$ for all α in A.

Proof. Well-order Λ . If Λ has no largest element, let $\Lambda' = \Lambda$. Otherwise, adjoin ∞ to Λ and extend the ordering from Λ to $\Lambda \cup \{\infty\}$ by declaring that ∞ is the largest element in $\Lambda \cup \{\infty\}$. In this case, let $\Lambda' = \Lambda \cup \{\infty\}$. Let λ_0 be the smallest element of Λ . For each $\lambda \in \Lambda' \setminus \{\lambda_0\}$, define F_{λ} by $F_{\lambda} = \sum_{\rho < \lambda} E_{\lambda}$. So $F_{\lambda} = \langle y_{\alpha} \rangle_{\alpha \in \Lambda}$ where $y_{\alpha} = \overline{1}$ for all $\alpha < \lambda$ and $y_{\alpha} = \overline{0}$ for all $\alpha \ge \lambda$. Clearly, if $\lambda_1, \lambda_2 \in \Lambda' \setminus \{\lambda_0\}$, where $\lambda_1 \le \lambda_2$, then $F_{\lambda_1}F_{\lambda_2} = F_{\lambda_2}F_{\lambda_1} = F_{\lambda_1}$. Moreover, if λ is a limit ordinal of $\Lambda' \setminus \{\lambda_0\}$, then $F_{\lambda} = \lim_{\rho < \lambda} F_{\rho}$. Hence by [15, Lemma 12], there exists a family $\{h_{\lambda}: \lambda \in \Lambda' \setminus \{\lambda_0\}\}$

of idempotents in A such that $h_{\lambda_1}h_{\lambda_2} = h_{\lambda_2}h_{\lambda_1} = h_{\lambda_1}$ for all $\lambda_0 < \lambda_1 \le \lambda_2$ and $h_{\lambda} + J = F_{\lambda}$ for all $\lambda \in \Lambda' \setminus \{\lambda_0\}$. Let h_{λ_0} be the additive identity of A. For each $\lambda \in \Lambda$, let $\gamma(\lambda)$ denote the smallest element of $\{\rho \in \Lambda': \lambda < \rho\}$ and let $e_{\lambda} = h_{\gamma(\lambda)} - h_{\lambda}$. Then $\{e_{\lambda}: \lambda \in \Lambda\}$ is a family of orthogonal idempotents in A such that for each α in Λ , $e_{\alpha} + J = E_{\alpha}$ and $e_{\alpha}Ae_{\alpha}/e_{\alpha}Je_{\alpha} \cong \mathbb{Z}/(2)$. As each E_{α} is a primitive idempotent in A/J, Lemma 2.3 yields that each e_{α} is a primitive idempotent in A. So it suffices to prove that $\sum_{\alpha \in \Lambda} e_{\alpha} = 1$.

First notice that $\sum_{\alpha \in A} e_{\alpha}$ exists. Indeed, as A is compact, there exists a fundamental system of ideal neighborhoods of zero in A [10, Theorem 3.5, p. 12, Theorem 7.7, p. 62; 15, Theorem 8 and Lemma 9]. Since A is complete, it suffices to show that if U is an open ideal of A and if $M = \{\alpha \in A: e_{\alpha} \notin U\}$, then M is finite. Let U be an open ideal of A. Then A/U is a compact discrete ring and hence a finite ring. In particular, A/U has finitely many idempotents. Moreover, if α and β are distinct elements of M, then $e_{\alpha} + U \neq e_{\beta} + U$. Indeed, if $e_{\alpha} + U = e_{\beta} + U$, then $e_{\alpha} + U = e_{\alpha}^2 + U = e_{\alpha}e_{\beta} + U = 0 + U = U$, a contradiction. Hence M is finite and so $\sum_{\alpha \in A} e_{\alpha}$ exists. (The above proof is an adaptation of one given by Scth Warner in an unpublished manuscript.) Since $\{e_{\alpha}: \alpha \in A\}$ is a family of orthogonal idempotents in A, $\sum_{\alpha \in A} e_{\alpha}$ is an idempotent as well. Thus $1 - \sum_{\alpha \in A} e_{\alpha}$ is an idempotent in A. By construction, $1 - \sum_{\alpha \in A} e_{\alpha} \in J$ and therefore, as in the proof of Lemma 2.3, $1 - \sum_{\alpha \in A} e_{\alpha} = 0$.

Lemma 2.5. Let A be a ring with identity and let Γ denote a nonempty set of idempotents in A such that for all f in Γ , f + J is a central idempotent in A/J. If Γ is contained in the centralizer of J in A, then Γ is contained in the center of A.

Proof. Let $e \in \Gamma$ and let $x \in A$. Since (e+J)(x+J) = (x+J)(e+J), $ex - xe \in J$. Denote ex - xe by a. Then ae = ea and so $ea = e^2a = e(ea) = e(ae) = e(ex - xe)e = 0$. Thus 0 = ea = e(ex - xe) = ex - exe and hence ex = exe. Since ae = ea = 0, 0 = ae = (ex - xe)e and consequently, exe = xe as well. Therefore e is in the center of A.

Lemma 2.6. Let Λ be a nonempty set and for each $\alpha \in \Lambda$, let F_{α} be a finite field endowed with the discrete topology. Let $A = \prod_{\alpha \in \Lambda} F_{\alpha}$, endowed with the product topology. If I is a nonzero closed left (right) ideal of $\prod_{\alpha \in \Lambda} F_{\alpha}$, then there exists a nonempty subset Λ_1 of Λ such that $I = \prod_{\alpha \in \Lambda} B_{\alpha}$ where $B_{\alpha} = F_{\alpha}$ for all α in Λ_1 and $B_{\alpha} = \{0_{\alpha}\}$ for all $\alpha \in \Lambda \setminus \Lambda_1$ (where 0_{α} is the additive identity of F_{α}).

Proof. For each α in Λ , let 1_{α} denote the multiplicative identity of F_{α} . Define Λ_1 by, $\Lambda_1 = \{ \alpha \in \Lambda : \text{ there exists } \langle x_{\beta} \rangle_{\beta \in \Lambda} \text{ in } I \text{ with } x_{\alpha} \neq 0_{\alpha} \}$. For each α in Λ_1 , let $B_{\alpha} = F_{\alpha}$ and for each α in $\Lambda \setminus \Lambda_1$, let $B_{\alpha} = \{0_{\alpha}\}$. Clearly $I \subseteq \prod_{\alpha \in \Lambda} B_{\alpha}$.

We first prove that given any α in Λ_1 , the element s_{α} of A defined by, $s_{\alpha} = \langle v_{\beta} \rangle_{\beta \in \Lambda}$ where $v_{\alpha} = 1_{\alpha}$ and $v_{\beta} = 0_{\beta}$ for $\beta \neq \alpha$, is an element of I. Indeed, let $\langle x_{\beta} \rangle_{\beta \in \Lambda} \in I$ be such that $x_{\alpha} \neq 0_{\alpha}$ and let $y_{\alpha} \in F_{\alpha}$ be such that $x_{\alpha}y_{\alpha} = y_{\alpha}x_{\alpha} = 1_{\alpha}$. Define $\langle z_{\beta} \rangle_{\beta \in \Lambda} \in A$ by, $z_{\alpha} = y_{\alpha}$ and $z_{\beta} = 0_{\beta}$ for $\beta \neq \alpha$. Then $s_{\alpha} = \langle z_{\beta} \rangle_{\beta \in \Lambda} \langle x_{\beta} \rangle_{\beta \in \Lambda} \in I$. Now let $\langle d_{\alpha} \rangle_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} B_{\alpha}$. As *I* is closed, it suffices to prove that $\langle d_{\alpha} \rangle_{\alpha \in \Lambda} \in \overline{I}$. So let *U* be a neighborhood of $\langle d_{\alpha} \rangle_{\alpha \in \Lambda}$ in *A*. Without loss of generality, we may assume that there exists a finite subset Λ_2 of Λ such that $U = \prod_{\alpha \in \Lambda} U_{\alpha}$ where $U_{\alpha} = \{d_{\alpha}\}$ for all α in Λ_2 and $U_2 = F_{\alpha}$ for all $\alpha \in \Lambda \setminus \Lambda_2$. Let $\Lambda'_2 \subseteq \Lambda_2$ be such that for all α in Λ'_2 , $d_{\alpha} \neq 0_{\alpha}$ and for all α in $\Lambda_2 \setminus \Lambda'_2$, $d_{\alpha} = 0_{\alpha}$. For each α in Λ'_2 , let $t_{\alpha} = \langle c_{\beta} \rangle_{\beta \in \Lambda}$ where $c_{\alpha} = d_{\alpha}$ and $c_{\beta} = 0_{\beta}$ for all $\beta \neq \alpha$. Recall that for each α in Λ'_2 , $s_{\alpha} \in I$. Thus $\sum_{\alpha \in \Lambda'_1} t_{\alpha} s_{\alpha} \in I \cap U$ and so $\langle d_{\alpha} \rangle_{\alpha \in \Lambda} \in \overline{I}$.

Recall that a ring A with identity is called a *local* ring if the set of nonunits in A is an ideal of A.

Lemma 2.7. Let A be a compact ring with identity having characteristic two such that $J = \{0, a\}$ for some nonzero a in A and $A/J \cong \prod_{\alpha \in A} \mathbb{Z}/(2)$ for some nonempty set A. Then for some indexing set Γ , A is isomorphic and homeomorphic to $\left(\prod_{\beta \in \Gamma} \mathbb{Z}/(2)\right) \times A_0$ where A_0 is one of the following rings:

(1) $\mathbb{Z}_{(2)}[x]_{(x^2)}$ where $\mathbb{Z}_{(2)}[x]$ is the ring of polynomials in x with coefficients in

- $\mathbb{Z}/(2)$ and (x^2) is the ideal of $\mathbb{Z}/_{(2)}[x]$ generated by x^2 ; or
 - (2) the set of all 2×2 upper triangular matrices over $\mathbb{Z}/(2)$.

Proof. First notice that as g is a unit in A if and only if g + J is a unit in A/J, G = 1 + J. By Lemma 2.4, there exists a primitive idempotent e in A such that $ea \neq 0$ and $eAe/eJe \cong \mathbb{Z}/(2)$. In particular, as $ea \in J$, ea = a. Recall that the Pierce decomposition of A relative to e yields that $A = eAe \oplus (1 - e)A(1 - e) \oplus eA(1 - e) \oplus (1 - e)Ae$. (See for example [14, p. 48].)

Suppose that eae = 0. We first show that $A = eAe \oplus (1-e)A(1-e) \oplus eA(1-e)$ where J = eA(1-e). Indeed, as eae = 0, ae = 0 and thus (1-e)a(1-e) = (1-e)a = 0. So a = eae+(1-e)a(1-e)+ea(1-e)+(1-e)ae = ea(1-e) and consequently $J \subseteq eA(1-e)$. Notice that if $x \in eA(1-e)$, then $x^2 = 0$ and hence (1+x)(1-x) = (1-x)(1+x) = 1. Thus if $x \in eA(1-e)$, then $1+x \in G = 1+J$. Therefore, $eA(1-e) \subseteq J$. Similarly as $((1-e)Ae)^2 = \{0\}, (1-e)Ae \subseteq J = eA(1-e)$ and hence $(1-e)Ae = \{0\}$. So $A = eAe \oplus (1-e)A(1-e) \oplus eA(1-e)$ where eA(1-e) = J.

Observe next that as eae = 0, $eJe = \{0\}$ and hence eAe is a finite field having two elements. Moreover as (1 - e)a(1 - e) = 0 and as (1 - e)J(1 - e) is the Jacobson radical of (1 - e)A(1 - e) [14, Proposition 1, p. 48], (1 - e)A(1 - e) is a compact semisimple ring with identity $1 - e \neq 0$. Furthermore, 1 - e is the only unit in (1 - e)A(1 - e). Indeed, if x and y are elements in (1 - e)A(1 - e) such that $x \neq 1 - e$ but xy = yx = (1 - e), then as xe = ex = ye = ey = 0, (x + e)(y + e) = (y + e)(x + e) = 1. Therefore $x + e \in G = 1 + J = \{1, 1 + a\}$. Since $x \neq 1 - e$, x + e = 1 + a. Consequently, $ex + e^2 = e + ea = e + a$ and so 0 = ex = a, a contradiction. Thus (1 - e)A(1 - e) is isomorphic and homeomorphic to $\prod_{x \in \Gamma_1} \mathbb{Z}/(2)$ for some nonempty set Γ_1 by [15, Theorem 16]. For simplicity of notation, assume that $(1 - e)A(1 - e) = \prod_{x \in \Gamma_1} \mathbb{Z}/(2)$. Let a^r denote the right annihilator of a in A and let $g: (1-e)A(1-e) \to J$ be given by g(x) = ax for all x in (1-e)A(1-e). Observe that g is a surjective additive group homomorphism with kernel $a^r \cap (1-e)A(1-e)$. So $a^r \cap (1-e)A(1-e)$ is a closed subset of (1-e)A(1-e) and hence by Lemma 2.6, there exists a subset Γ_2 of Γ_1 such that $a^r \cap (1-e)A(1-e) = \prod_{x \in \Gamma_1} B_x$ where $B_x = \mathbb{Z}/(2)$ for all α in Γ_2 and $B_x = \{\overline{0}\}$ otherwise (where $\overline{0}$ is the additive identity of $\mathbb{Z}/(2)$). In particular, $a^r \cap (1-e)A(1-e)$ is a two-sided ideal of (1-e)A(1-e). Moreover, as $(1-e)A(1-e)/a^r \cap (1-e)A(1-e) \cong J$, the cardinality, $|\Gamma_1 \setminus \Gamma_2|$, of $\Gamma_1 \setminus \Gamma_2$ is 1. Let $\alpha_0 \in \Gamma_1 \setminus \Gamma_2$ and let $I = \prod_{x \in \Gamma_1} C_x$ where $C_{\alpha_0} = \mathbb{Z}/(2)$ and for all $\alpha \in \Gamma_1 \setminus \{\alpha_0\}$, $C_x = \{\overline{0}\}$. Then $(1-e)A(1-e) = I \oplus a^r \cap (1-e)A(1-e)$ and so $A = eAe \oplus [I \oplus a^r \cap (1-e)A(1-e)] \oplus eA(1-e)$. A routine proof shows that $eAe \oplus I \oplus eA(1-e)$ and $a^r \cap (1-e)A(1-e)$ are ideals of A, the first of which has 8 elements and the second of which is isomorphic and homeomorphic to $\prod_{x \in \Gamma_1} \mathbb{Z}/(2)$ or to $\{\overline{0}\}$ if $\Gamma_2 = \emptyset$.

By construction, $I \cong \mathbb{Z}/(2)$. So if *i* is the multiplicative identity of *I*, then e+i is the multiplicative identity of the ring $eAe \oplus I \oplus eA(1-e)$. Notice that $eAe \oplus I \oplus eA(1-e)$ is noncommutative as $ea \neq ae$. Thus $eAe \oplus I \oplus eA(1-e)$ is isomorphic to the ring of 2×2 upper triangular matrices over $\mathbb{Z}/(2)$ by [17, Theorem 14]. Consequently, if eae = 0, then *A* is isomorphic and homeomorphic to A_0 or to $\left(\prod_{\alpha \in \Gamma_2} \mathbb{Z}/(2)\right) \times A_0$ where A_0 is the ring of 2×2 upper triangular matrices over $\mathbb{Z}/(2)$.

Finally, suppose that $eae \neq 0$, that is, suppose that eae = a. We first show that e is in the center of A. Indeed, let $x \in A$. As A/J is commutative, $ex - xe \in J$. Therefore ex - xe = 0 or ex - xe = a. If ex - xe = a, then $e^2x - exe = ea = a = ex - xe$ and hence exe = xe. Similarly, exe = ex and so in either case ex = xe. Thus e is in the center of A. In particular, $eA(1 - e) = (1 - e)Ae = \{0\}$ and so $A = eAe \oplus (1 - e)A(1 - e)$.

Recall that $eAe/eJe \cong \mathbb{Z}/(2)$, a finite field having two elements. So eAe is a local ring with identity having four elements and having characteristic 2. Consequently, by [3, Theorem 2.5], $eAe \cong \mathbb{Z}/(2)[x]/(x^2)$.

Since ea = a, (1 - e)a(1 - e) = 0. Therefore, as before, if $1 - e \neq 0$, then (1 - e)A(1 - e) is isomorphic and homeomorphic to $\prod_{x \in \Gamma} \mathbb{Z}/(2)$ for some nonempty set Γ . Otherwise, $(1 - e)A(1 - e) = \{0\}$. Thus A is isomorphic and homeomorphic to $(\prod_{x \in \Gamma} \mathbb{Z}/(2)) \times \mathbb{Z}/(2)[x]/(x^2)$ or to $\mathbb{Z}/(2)[x]/(x^2)$. \Box

Theorem 2.8. Let A be a compact ring with identity and let G be the group of units in A. G is simple if and only if A is isomorphic and homeomorphic to $\prod_{x \in A} \mathbb{Z}/(2)$ for some nonempty set A or A is isomorphic and homeomorphic to $(\prod_{x \in A} \mathbb{Z}/(2)) \times A_0$ where A is an arbitrary set and A_0 is one of the following rings:

(1) a finite field of cardinality 3 or 2^n for some positive integer n such that $2^n - 1$ is a prime,

(2) the set of $n \times n$ matrices over $\mathbb{Z}/(2)$ where n is a positive integer greater than or equal to 3,

(3) $\mathbb{Z}/(4)$,

(4) $\mathbb{Z}_{(2)}[x]_{/(x^2)}$, or (5) the ring of 2×2 upper triangular matrices over $\mathbb{Z}_{(2)}$.

Proof. As $GL(n, \mathbb{Z}/(2))$ is simple for all $n \ge 3$ [19, Theorem 9.9, p. 78], if A is one of the rings described above, then G is a finite simple group. Conversely, assume that G is a simple group. By Theorem 2.2, G is finite.

First assume that A is semisimple. By [15, Theorem 16], A is isomorphic and homeomorphic to $\prod_{x \in A} M_x$ where each M_x is the set of $n_x \times n_x$ matrices over a finite field F_x . For each α in A, let G_x denote the group of units in M_x . As G is a simple group, the set A_1 defined by $A_1 = \{\alpha \in A : |G_{\alpha}| > 1\}$ has at most one element. Moreover, if $\alpha \in A_1$, then G_x is a finite simple group. Thus for all β in $A \setminus A_1, M_\beta \cong \mathbb{Z}/(2)$ and if $A_1 = \{\alpha\} \neq \emptyset$, then M_x is a finite field such that the cardinality of G_{α} is a prime or M_x is isomorphic to the ring of $n \times n$ matrices over $\mathbb{Z}/(3)$ for some $n \ge 3$ [19, Theorem 9.9, p. 78].

Suppose then that $J \neq \{0\}$. Since 1+J is a closed normal subgroup of G, G = 1+J. Consequently, A/J is isomorphic and homeomorphic to $\prod_{\alpha \in A} \mathbb{Z}/(2)$ for some nonempty set A by [15, Theorem 16; 12, Theorem, p. 431; 13, Theorem, p. 171].

Since J is finite, $J^2 \neq J$ by Nakayama's Lemma [13, Theorem, p. 412]. Thus as $1 + J^2$ is a closed normal subgroup of 1 + J, $J^2 = (0)$. In particular, as G = 1 + J, G is abelian and so the cardinality of G is a prime p. Note that $2 \in J$ since $A/J \cong \prod_{x \in A} \mathbb{Z}/(2)$. Therefore as $J^2 = (0)$, the characteristic of A is either 2 or 4. Let $a \in J \setminus \{0\}$. If the characteristic of A is 2, then $(1+a)^2 = 1$ and hence the order of 1+a is 2. Thus p = 2. On the other hand, if the characteristic of A is 4, then $2 \in J \setminus \{0\}$ and $(1+2)^2 = 1$. Therefore in either case, p = 2, that is $1+J = G = \{1, 1+a\}$ for some nonzero a in J. By Lemma 2.7, it suffices to show that if A has characteristic 4, then A is isomorphic and homeomorphic to $(\prod_{\beta \in \Gamma} \mathbb{Z}/(2)) \times \mathbb{Z}/(4)$ for some indexing set Γ .

Assume then that the characteristic of A is 4. We first prove that A is a commutative ring. As $2 \in J \setminus \{0\}$, $J = \{0, 2\}$ and hence by Lemma 2.5, if e is any idempotent in A, then e is contained in the center of A. Consequently, A is commutative. Indeed, let $x \in A$. Then x+J is an idempotent in A/J and hence there exists an idempotent e in A such that x+J = e+J [15, Lemma 12]. Thus $x \in \{e, e+2\}$ and so x is in the center of A. Therefore by [15, Theorem 17], A is isomorphic and homeomorphic to $\prod_{\alpha \in A_1} N_{\alpha}$ where for each α in A_1 , N_{α} is a commutative, local, compact ring with identity. For each α in A_1 , let G_{α} denote the group of units in N_{α} and let J_{α} denote the Jacobson radical of N_{α} . As $A/J \cong \prod_{\alpha \in A} \mathbb{Z}/(2)$, for each α in $A_1, N_{\alpha}/J_{\alpha} \cong \mathbb{Z}/(2)$. Let A_2 be the subset of A_1 defined by, $A_2 = \{\alpha \in A_1 : |G_{\alpha}| > 1\}$. Then for all $\alpha \in A_1 \setminus A_2$, $|G_{\alpha}| = 1$ and hence $N_{\alpha} \cong \mathbb{Z}/(2)$. As before, since G is simple, A_2 has at most one element. But as A has characteristic 4, $A_2 \neq \emptyset$. Let $A_2 = \{\alpha_0\}$. Then A is isomorphic and homeomorphic to $(\prod_{\alpha \in A_1 \setminus A_2} \mathbb{Z}/(2)) \times N_{\alpha}$. It suffices to show that $N_{\alpha_0} \cong \mathbb{Z}/(4)$.

Observe that N_{α_0} has characteristic 4 as A has characteristic 4. Moreover, as |G| = 2, $|G_{\alpha_0}| = 2$ as well. Therefore $|N_{\alpha_0}| = 4$ since $N_{\alpha_0}/J_{\alpha_0} \cong \mathbb{Z}/(2)$. So N_{α_0} is a 4-element ring with identity having characteristic 4, that is, $N_{\alpha_0} \cong \mathbb{Z}/(4)$. \Box

Corollary 2.9. Let A be a compact ring with identity and let G be the group of units in A. The following statements are equivalent:

- (a) G possesses no nontrivial closed normal subgroups.
- (b) G is a finite simple group.
- (c) G is isomorphic to one of the following finite simple groups:
 - (1) the trivial group,
 - (2) $\mathbb{Z}/(2)$,
 - (3) $\mathbb{Z}/(2^n-1)$ where 2^n-1 is a prime or
 - (4) $GL(n, \mathbb{Z}/(2))$ where $n \ge 3$.

Proof. The corollary follows from Theorems 2.2 and 2.8. \Box

3. Simplicity of G/Z(G)

Throughout this section, unless otherwise stated, A is a compact ring with identity. For each subgroup U of G, we will denote the center of U by Z(U).

Lemma 3.1. Z(G) is a closed normal subgroup of G and G/Z(G) is a compact totally disconnected group.

Proof. The fact that Z(G) is a closed subset of G follows from the continuity of the map $(x, y) \rightarrow xyx^{-1}y^{-1}$. Since G is totally disconnected by Theorem 2.2, G/Z(G) is also totally disconnected [10, Theorem 7.11, p. 63]. \Box

Lemma 3.2. G/Z(G) is a finite simple group if and only if G/Z(G) has no nontrivial closed normal subgroups.

Proof. The result follows from Lemmas 2.1 and 3.1. \Box

Lemma 3.3. If G/Z(G) is a finite simple group, then either W = Z(W) or $W/Z(W) \cong G/Z(G)$.

Proof. Assume that $W \neq Z(W)$. Since WZ(G) is a normal subgroup of G containing Z(G), WZ(G) = Z(G) or WZ(G) = G. If WZ(G) = Z(G), then $W \subseteq Z(G)$ and hence W = Z(W), a contradiction. So WZ(G) = G. Therefore $G/Z(G) = WZ(G)/Z(G) \cong W/W \cap Z(G)$. In particular, $W/W \cap Z(G)$ is a simple group. Clearly, $W \cap Z(G) \subseteq Z(W)$. Therefore since $W/W \cap Z(G)$ is simple and since $W \neq Z(W)$ by assumption, $Z(W) = W \cap Z(G)$. So $G/Z(G) \cong W/Z(W)$. \Box

As in Section 1, for each $w \in W$, define the *length* l(w) of w to be the smallest positive integer m such that there exist w_1, w_2, \ldots, w_m in Δ with $w = w_1 w_2 \cdots w_m$. For each subset S of W, let $l(S) = \sup\{l(s): s \in S\}$.

Lemma 3.4. Let $w \in W$ be such that $l(w) \leq 2$. Then for each positive integer n, $l(w^n) \leq 2$.

Proof. The result clearly holds if l(w) = 1, that is, if $w^2 = 1$. So assume that l(w) = 2. Let $d_1, d_2 \in \Delta$ be such that $w = d_1d_2$ and let *n* be a positive integer. If n = 2k + 1 for some positive integer *k*, then $w^n = [(d_1d_2)^k d_1][d_2(d_1d_2)^k]$ where $[(d_1d_2)^k d_1]^2 = [d_2(d_1d_2)^k]^2 = 1$ and so $l(w^n) \leq 2$. If *n* is an even integer, then $w^n = [(d_1d_2)^{n-2}d_1][d_2d_1d_2]$ where $[(d_1d_2)^{n-2}d_1]^2 = (d_2d_1d_2)^2 = 1$ and so once again, $l(w^n) \leq 2$. \Box

The following was proved in [6].

Lemma 3.5. Suppose that 2 is a unit in A. The following are equivalent:

- (1) $\{g \in (1+J) \cap W: l(g) \le 2\} = \{1\}.$
- (2) $(1+J) \cap W = \{1\}.$

(3) A is isomorphic and homeomorphic to $\prod_{\alpha \in A} N_{\alpha}$ where for each α in A, N_{α} is a matrix ring over a finite field of odd characteristic or N_{α} is a compact local ring with identity such that the characteristic of N_{α}/J_{α} is an odd prime where J_{α} is the Jacobson radical of N_{α} .

Proof. See [6, Theorem 2.6]. \Box

Lemma 3.6. Let F be a finite field having odd characteristic, let n be a positive integer and let A = M(n, F), the ring of $n \times n$ matrices over F.

- (1) $W = \{x \in A : \det x = \pm 1\}$ and $l(W) \le 4$.
- (2) $Z(W) = Z(G) \cap W$.
- (3) W/Z(W) is simple if and only if there is a k in F with $k^n = -1$.

Proof. (1) holds by [9]. Clearly (2) and (3) hold when n = 1. So assume that $n \ge 2$. Notice that since F has odd characteristic, if $w \in G$, then $w \operatorname{diag}(1, 1, \dots, 1, -1) = \operatorname{diag}(1, 1, \dots, 1, -1)w$ if and only if

$$w = \begin{pmatrix} 0 \\ B & \vdots \\ 0 \\ 0 & \dots & 0 \\ a_{nn} \end{pmatrix}$$

for some nonsingular matrix B in M(n-1, F) and for some a_{nn} in $F \setminus \{0\}$. In particular, if $w \in Z(W)$, then w has the above form. So for all w in Z(W) and for all k in $F \setminus \{0\}$, wdiag(1, 1, ..., 1, k) = diag(1, 1, ..., 1, k)w. As $G = W\{diag(1, 1, ..., 1, k): k \in F \setminus \{0\}\}$ [18, Lemma 8.13, p. 163], $Z(W) \subseteq Z(G)$ and hence (2) holds.

Denote $\{x \in A: \text{ det } x = 1\}$ by SL(n, F). By (1) and (2), $Z(W) = \{\alpha I: \alpha^n = \pm 1\}$ where *I* is the $n \times n$ identity matrix in *A*. Hence as $Z(SL(n, F)) = \{\alpha I: \alpha^n = 1\}$ [18, Theorem 8.15, p. 164], $Z(SL(n, F)) = SL(n, F) \cap Z(W)$. Suppose there is a k in F with $k^n = -1$. Since $kI \in Z(W)$ and det(kI) = -1, SL(n,F)Z(W) = W. Therefore, $W/Z(W) = SL(n,F)Z(W)/Z(W) \cong SL(n,F)/(SL(n,F) \cap Z(W)) = SL(n,F)/Z(SL(n,F)) = PSL(n,F)$, the projective unimodular group. Therefore if $n \ge 3$, then W/Z(W) is simple by the Jordan-Dickson Theorem [18, Theorem 8.27, p. 174]. Since there exists a k in F with $k^n = -1$, if n = 2, then the cardinality of F must be greater than 3. Consequently, W/Z(W) is simple by the Jordan-Moore Theorem [18, Theorem 8.19, p. 167].

Conversely, assume that W/Z(W) is simple. If for all k in F, $k^n \neq -1$, then $Z(W) = \{\alpha I: \alpha^n = 1\}$ and hence SL(n, F)/Z(W) is a proper normal subgroup of W/Z(W), a contradiction. Therefore (3) holds. \Box

Lemma 3.7. Suppose that 2 is a unit in A and that G/Z(G) is a finite simple group. If $l(Z(W)) \leq 4$ or if Z(W) is a torsion group, then $(1 + J) \cap W \subseteq Z(G)$.

Proof. Assume that $l(Z(W)) \leq 4$. By Lemma 3.2, since G/Z(G) is a simple group, G/Z(G) is finite. Therefore by the Feit-Thompson Theorem [8, Theorem, p. 775], the order, |G/Z(G)|, of G/Z(G) is 1, a prime p or $2^n q$ where n is a positive integer and q is an odd integer. The result clearly holds if |G/Z(G)| = 1 and so we may assume that |G/Z(G)| is a prime p or |G/Z(G)| is even.

Suppose first that |G/Z(G)| = 2. We will prove that $(1+J) \cap W = \{1\}$. By Lemma 3.5 it suffices to show that if $w \in (1+J) \cap W$ and $l(w) \leq 2$, then w = 1. Let $d_1, d_2 \in \Delta$ where $d_1d_2 \in 1 + J$. If $d_1d_2 \neq 1$, let $a \in J \setminus \{0\}$ be such that $d_1d_2 = 1 + a$. Then $(d_1d_2)^2 \neq 1$. Indeed, if $(d_1d_2)^2 = 1$, then $1 + 2a + a^2 = (1 + a)^2 = 1$ and so a(2 + a) = 0. But 2 + a is a unit in A and consequently a = 0, a contradiction. So $(d_1d_2)^2 \neq 1$. Therefore, $(d_1d_2)^2 \in (1 + J) \setminus \{1\}$ and so there exists a nonzero b in Jwith $(d_1d_2)^2 = 1 + b$. By Lemma 3.4, $(d_1d_2)^2 = \sigma_1\sigma_2$ for some $\sigma_1, \sigma_2 \in \Delta$. Since $|G/Z(G)| = 2, \sigma_1\sigma_2 = (d_1d_2)^2 \in Z(G)$. Therefore $(1 + b)^2 = (\sigma_1\sigma_2)^2 = (\sigma_1\sigma_2)\sigma_1\sigma_2 =$ $\sigma_1(\sigma_1\sigma_2)\sigma_2 = 1$. Hence b(2 + b) = 0 and so b = 0, a contradiction. Consequently, if |G/Z(G)| = 2, then $(1 + J) \cap W = \{1\} \subseteq Z(G)$.

Assume that |G/Z(G)| is an odd prime p. Let $d \in \Delta$. Then $d = d^p \in Z(G)$ and therefore $W \subseteq Z(G)$.

Finally, assume that $|G/Z(G)| = 2^n q$ where *n* is a positive integer and *q* is odd. As $(1 + J) \cap W$ is a normal subgroup of *G*, $((1 + J) \cap W)Z(G) = G$ or $((1 + J) \cap W)Z(G) = Z(G)$. In order to prove that $(1 + J) \cap W \subseteq Z(G)$, it suffices to prove that $((1 + J) \cap W)Z(G) = G$. Since |G/Z(G)| is even, there exists a *g* in *G* such that the order of gZ(G) in G/Z(G) is 2. As $((1 + J) \cap W)Z(G) = G$, there exists a nonzero element *a* in *J* such that $1 + a \in W$ and gZ(G) = (1 + a)Z(G). Let $w = (1 + a)^2$. Then $w \in W \cap Z(G) \subseteq Z(W)$. Observe that *w* has finite order. Indeed, since $|(Z(W))| \leq 4$, $w = d_1d_2d_3d_4$ where each d_i is in Δ . As $w \in Z(G)$, an inductive argument establishes that for each positive integer k, $w^k = (d_1d_2)^k(d_3d_4)^k$. Let k = |G/Z(G)|. By Lemma 3.4, there exist $\sigma_1, \sigma_2, \sigma_3, \sigma_4 \in \Delta$ such that $(d_1d_2)^k \in Z(G), (\sigma_1\sigma_2)^2 = (\sigma_3\sigma_4)^2 = 1$. Therefore $w^{2k} = 1$. Let k_1 be the order of w. Write $k_1 = 2^i k_0$ where *i* is a nonnegative integer and k_0 is odd. Recall that $w = (1+a)^2$. Notice that as the order of (1+a)Z(G) in G/Z(G) is 2, $(1+a)^{k_0} \neq 1$. So $(1+a)^{k_0} = 1+b$ for some nonzero *b* in *J*. Hence $(1+b)^{2^{i+1}} = (1+a)^{2\cdot 2^i k_0} = w^{k_1} = 1$. Therefore

$$b\left[2^{i+1} + \binom{2^{i+1}}{2}b + \dots + b^{2^{i+1}-1}\right] = 2^{i+1}b + \binom{2^{i+1}}{2}b^2 + \dots + b^{2^{i+1}} = 0$$

But 2^{i+1} is a unit in A and $\binom{2^{i+1}}{2}b + \cdots + b^{2^{i+1}-1} \in J$. Consequently b = 0, a contradiction.

Observe that in the above argument, the assumption that $l(Z(W)) \leq 4$ was only used to prove that if |G/Z(G)| is even and if $w \in W \cap Z(G)$, then w has finite order. Consequently a similar proof establishes that if Z(W) is a torsion group, then $(1+J) \cap W \subseteq Z(G)$ as well. \Box

Theorem 3.8. Let A be a compact ring with identity for which 2 is a unit in A. Let G denote the group of units in A and let W be the subgroup of G generated by the set $\{g \in G: g^2 = 1\}$ of involutions of G. Suppose that $(1 + J) \cap W \subseteq Z(G)$. Then the following are equivalent:

(1) G/Z(G) is a finite simple group.

(2) A is isomorphic and homeomorphic to one of the following rings:

(i) $M(n,F) \times \prod_{\alpha \in \Lambda} N_{\alpha}$ where M(n,F) is the ring of $n \times n$ matrices over a finite field F of odd characteristic for which there exists an element k in F satisfying $k^{n} = -1$ and for each α in Λ , N_{α} is a commutative compact local ring with identity such that the characteristic of N_{α}/J_{α} is an odd prime where J_{α} is the Jacobson radical of N_{α} ,

(ii) $N \times \prod_{\alpha \in \Lambda} N_{\alpha}$ where N is a compact local ring with identity such that the characteristic of N/J(N) is an odd prime and G(N)/Z(G(N)) is a simple group and where for each α in Λ , N_{α} has the properties described in (i), or

(iii) $\prod_{\alpha \in \Lambda} N_{\alpha}$ where Λ is a nonempty set and for each α in Λ , N_{α} has the properties described in (i).

Proof. By Lemma 3.6, if A is isomorphic to a ring of type (i), then G/Z(G) is a simple group. Therefore 2° implies 1° .

Conversely, assume that G/Z(G) is a simple group. Denote $\{g \in G : l(g) \le 2\}$ by Δ^2 . Then $(1+J) \cap \Delta^2 \subseteq (1+J) \cap W \subseteq Z(G)$. Therefore $(1+J) \cap \Delta^2 = \{1\}$. Indeed, if $d_1, d_2 \in \Delta$ and $d_1d_2 \in 1+J$, then $(d_1d_2)^2 = (d_1d_2)d_1d_2 = d_1(d_1d_2)d_2$ as $d_1d_2 \in Z(G)$. So $(d_1d_2)^2 = 1$. Hence if $d_1d_2 = 1 + a$ where $a \in J$, then $(1 + a)^2 = (d_1d_2)^2 = 1$. So a(2 + a) = 0. Consequently, as 2 is a unit in A and as $a \in J$, a = 0. Thus $d_1d_2 = 1$. Therefore by Lemma 3.5, A is isomorphic and homeomorphic to $\prod_{x \in A} N_x$ where for each α in A, N_x is a matrix ring over a finite field having odd characteristic or N_x is a compact local ring with identity such that the characteristic of N_x/J_α is an odd prime where J_x is the Jacobson radical of N_x . For each α in A, let G_x denote the group of units in N_x . Since G/Z(G) is simple, the subset A_1 of A defined by $\Lambda_1 = \{ \alpha \in \Lambda : G_{\alpha} \text{ is nonabelian} \}$, has at most one element. Note that for each α in $\Lambda \setminus \Lambda_1$, N_{α} is a commutative ring by [3, Theorem 3.10]. Suppose that $\Lambda_1 \neq \emptyset$. Let $\alpha \in \Lambda_1$. Since $G_{\alpha}/Z(G_{\alpha})$ is a simple group, Λ is isomorphic and homeomorphic to a ring of type (i) or of type (ii) by Lemma 3.6.

Corollary 3.9. Let A be a compact ring with identity for which 2 is a unit. The following are equivalent:

(1) G/Z(G) is a finite simple group and $l(W) \leq 4$.

(2) G/Z(G) is a finite simple group and $l(Z(W)) \leq 4$.

(3) G/Z(G) is a finite simple group and $(1 + J) \cap W \subseteq Z(G)$.

(4) A is isomorphic and homeomorphic to a ring of type (i), (ii) or (iii) as described in Theorem 3.8.

(5) G/Z(G) is a finite simple group and W is a torsion group.

(6) G/Z(G) is a finite simple group and Z(W) is a torsion group.

Proof. By Lemma 3.7, (2) implies (3). Theorem 3.8 yields that (3) implies (4). Note that if N is a compact local ring with identity for which 2 is a unit, then $W(N) = \{\pm 1\}$ by [4, Theorem 2.9] (and in particular, l(W(N)) = 1). Consequently (4) implies (5). By Lemma 3.7, (6) implies (3) and hence (3)–(6) are equivalent. Lemma 3.6 and the above observation yield that if A is isomorphic to a ring of type (i), (ii) or (iii) as described in Theorem 3.8, then $l(W) \le 4$. Thus (1)–(6) are equivalent. \Box

4. Nilpotency and commutativity of W

Lemma 4.1. Let A be a compact ring with identity for which W is a nilpotent group. Then there exists a positive integer m such that for all $\sigma_1, \sigma_2 \in \Delta, (\sigma_1 \sigma_2)^{2^m} = 1$.

Proof. Let $\{1\} = Z_0 \subseteq Z_1 \subseteq \cdots \subseteq Z_{m-1} \subseteq Z_m = W$ be the ascending central series for W. So for all $i, 0 \le i \le m-1, Z_{m-i}/Z_{m-(i+1)}$ is the center of $W/Z_{m-(i+1)}$. Let $\sigma_1, \sigma_2 \in \Delta$. Since Z_m/Z_{m-1} is abelian, $(\sigma_1 \sigma_2)^2 \in Z_{m-1}$. By Lemma 3.4, there exist $\sigma_1^{(2)}$ and $\sigma_2^{(2)}$ in Δ such that $(\sigma_1 \sigma_2)^2 = \sigma_1^{(2)}\sigma_2^{(2)}$. Since Z_{m-1}/Z_{m-2} is the center of W/Z_{m-2} and since $\sigma_1^{(2)}\sigma_2^{(2)} \in Z_{m-1}, (\sigma_1^{(2)}\sigma_2^{(2)})\sigma_1^{(2)}Z_{m-2} = \sigma_1^{(2)}(\sigma_1^{(2)}\sigma_2^{(2)})Z_{m-2}$, that is, $(\sigma_1^{(2)}\sigma_2^{(2)})^2 \in Z_{m-2}$. So $(\sigma_1 \sigma_2)^{2^2} \in Z_{m-2}$. An inductive proof then establishes that $(\sigma_1 \sigma_2)^{2^m} \in Z_0 = \{1\}$. \Box

Theorem 4.2. Let A be a compact ring with identity for which 2 is a unit in A. The following are equivalent:

(1) W is a nilpotent group.

(2) A is isomorphic and homeomorphic to a product, $\prod_{\alpha \in \Lambda} N_{\alpha}$, where Λ is a nonempty set and for each α in Λ , N_{α} is a compact local ring with identity such that the characteristic of N_{α}/J_{α} is an odd prime p_{α} where J_{α} is the Jacobson radical of N_{α} .

(3) W is abelian.

(4) $W = \Delta$.

Proof. (3) and (4) are equivalent by [6, Corollary 2.9]. Assume that W is nilpotent. Let $\sigma_1, \sigma_2 \in \Delta$ be such that $\sigma_1 \sigma_2 \in 1 + J$. Then $\sigma_1 \sigma_2 = 1 + a$ for some a in J. By Lemma 4.1, there exists a positive integer m such that $(\sigma_1 \sigma_2)^{2^m} = 1$. Then $1 = (\sigma_1 \sigma_2)^{2^m} = (1 + a)^{2^m}$ and so $0 = 2^m a + \binom{2^{m-1}}{2}a^2 + \dots + a^{2^m} = a(2^m + a)^{2^m}$ $\binom{2^{i+1}}{2}a + \cdots + a^{2^{m-1}}$. Since 2^m is a unit in A and since $a \in J, 2^m + \binom{2^{i+1}}{2}a + \binom{2^{i+1}}{2}a$ $\cdots + a^{2^m-1}$ is a unit in A. Hence a = 0, that is, $(1+J) \cap \Delta^2 = \{1\}$. Therefore by Lemma 3.5, A is isomorphic and homeomorphic to a product, $\prod_{\alpha \in A} N_{\alpha}$, where for each α in Λ , N_{α} is the ring of $m_{\alpha} \times m_{\alpha}$ matrices over a finite field F_{α} having odd characteristic or N_{α} is a compact local ring with identity for which the characteristic of N_{α}/J_{α} is an odd prime p_{α} . Suppose that there exists an α in Λ such that N_{α} is the ring of $m_{\alpha} \times m_{\alpha}$ matrices over a finite field F_{α} where $m_{\alpha} > 1$. Denote $W(N_{\alpha})$ by W_{α} . Since W_{α} is a homomorphic image of W, W_{z} is a nilpotent group [18, Theorem 5.25, p. 90] and consequently W_{α} is solvable. By [9], $W_{\alpha} = \{x \in N_{\alpha}: \text{ det } x = \pm 1\}$ and so $SL(m_{\alpha}, F_{\alpha}) \subseteq W_{\alpha}$ (where $SL(m_x, F_x) = \{x \in N_x: det x = 1\}$). Therefore, $SL(m_x, F_x)$ is solvable [18, Theorem 5.12, p. 81]. So if Z is the center of $SL(m_x, F_x)$, then $SL(M_x, F_x)/Z$ is solvable as well [18, Theorem 5.13, p. 81]. By [19, Corollary, p. 80], $m_{\alpha} = 2$ and F_{α} has cardinality 3. Therefore we may assume that W_{α} is the group, $GL(2, \mathbb{Z}/(3))$, of 2×2 nonsingular matrices over $\mathbb{Z}/(3)$ by [9]. A routine calculation shows that if Z_1 is the center of GL(2, $\mathbb{Z}/(3)$), then GL(2, $\mathbb{Z}/(3)$)/Z₁ has a trivial center. Therefore if $m_{\alpha} > 1$, then W_{α} is not nilpotent. Hence (1) implies (2).

Clearly (3) implies (1) and so it suffices to prove that (2) implies (3). Assume that (2) holds. For each α in Λ , let W_{α} denote $W(N_{\alpha})$. By Theorem 2.9 of [4], for each α in Λ , W_{α} has precisely two elements. Therefore W is abelian. \Box

Corollary 4.3. Let A be a compact ring with identity such that 2 is a unit in A. The following are equivalent:

- (1) W is abelian and G/W is abelian.
- (2) A is a commutative ring.
- (3) G is abelian.

Proof. It suffices to prove that (1) implies (2). If W is abelian, then $A \cong \prod_{x \in A} N_x$ where for each α in Λ , N_x is a compact local ring with identity such that the characteristic of N_{α}/J_{α} is an odd prime where J_{α} is the Jacobson radical of N_{α} . For each α in Λ , let 1_{α} denote the multiplicative identity of N_x and let G_x and W_{α} denote $G(N_x)$ and $W(N_x)$, respectively. Note that by [4, Theorem 2.9], for each α in Λ , $W_x = \{\pm 1_{\alpha}\}$ (and hence $W \cong \prod_{x \in \Lambda} \{\pm 1_x\}$). By [3, Theorem 3.10], it suffices to prove that if, in addition, G/W is abelian, then G is abelian, that is, if G/W is abelian, then G_{α} is abelian for all α in Λ .

Let $\alpha \in A$. As N_{α}/J_{α} is a compact local ring with identity, N_{α}/J_{α} is a finite field by [15, Theorem 16]. Thus since $g \in G_{\alpha}$ if and only if $g+J_{\alpha}$ is a unit in N_{α}/J_{α} , there exist an element g_{α} in G_{α} and a positive integer *m* such that $G_{\alpha} = \bigcup_{n=0}^{m} (g_{\alpha}^{n} + J_{\alpha})$. Observe that xy = yx for all *x* and *y* in J_{α} . Indeed, if $xy \neq yx$ for some *x* and *y* in J_{α} , then $(1_{\alpha} + x)(1_{\alpha} + y) = -(1_{\alpha} + y)(1_{\alpha} + x)$ since G_{α}/W_{α} is abelian and since $W_{\alpha} = \{\pm 1_{\alpha}\}$.

So $2 \cdot 1_{\alpha} = -[yx + xy + 2(x + y)] \in J_{\alpha} \cap G_{\alpha}$, a contradiction. Similarly, $g_{\alpha}x = xg_{\alpha}$ for all x in J_{α} . Therefore as $G_{\alpha} = \bigcup_{n=0}^{m} (g_{\alpha}^{n} + J_{\alpha})$, G_{α} is abelian and consequently (1) implies (2). \Box

References

- [1] N. Bourbaki, Topologie Générale (Hermann, Paris, 1960) Chapters 3 and 4.
- [2] C. Chevalley, Theory of Lie Groups (Princeton University Press, Princeton, NJ, 1946).
- [3] J. Cohen and K. Koh, The group of units in a compact ring, J. Pure and Appl. Algebra 54 (1988) 167–179.
- [4] J. Cohen and K. Koh, Involutions in a compact ring, J. Pure Appl. Algebra 59 (1989) 151-168.
- [5] J. Cohen and K. Koh, The subgroup generated by the involutions in a compact ring, Comm. Algebra 19 (1991) 2923 2954.
- [6] J. Cohen and K. Koh, The structure of compact rings, J. Pure Appl. Algebra 77 (1992) 117-129.
- [7] R. Ellis, A note on the continuity of the inverse, Proc. Amer. Math. Soc. 8 (1957) 372-373.
- [8] W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963) 775-1029.
- [9] W. Gustafson, P. Halmos and H. Radjavi, Product of involutions, Linear Algebra Appl. 13 (1976) 157-162.
- [10] E. Hewitt and K. Ross, Abstract Harmonic Analysis I (Springer, Berlin, 1963).
- [11] E. Hewitt and K. Ross, Abstract Harmonic Analysis II (Springer, Berlin, 1970).
- [12] N. Jacobson, Basic Algebra I (Freeman, San Francisco, 1974).
- [13] N. Jacobson, Basic Algebra II (Freeman, San Francisco, 1980).
- [14] N. Jacobson, Structure of Rings, Vol. 37 (A.M.S. Coll. Pub., Providence, RI, 1968).
- [15] I. Kaplanksy, Topological rings, Amer. J. Math. 69 (1947) 153-183.
- [16] S. Lang, SL₂(**R**) (Springer, New York, 1985).
- [17] R. Raghavendrun, Finite associative rings, Composition Math. 21 (1969) 195-229.
- [18] J. Rotman, An Introduction to the Theory of Groups (Allyn and Bacon, Boston, 3rd ed., 1984).
- [19] M. Suzuki, Group Theory I (Springer, New York, 1982).